Noisy Monte Carlo using Order Statistics

Artan Boriçi

University of Tirana
Department of Physics

Why Noisy Monte Carlo?

- Noisy Monte Carlo: A Monte Carlo simulation with extra noise
- Example: $\operatorname{det} \mathrm{A}=\operatorname{det} \mathrm{D}\left(\mathrm{U}^{\prime}\right) / \operatorname{det} \mathrm{D}(\mathrm{U})=$ $\exp (\operatorname{Tr} \log (\mathrm{A}))$
- Log(A) difficult to evaluate
- But $Z^{\dagger} \log (A) Z, Z$ random easier task

Noisy Determinant

If $\mathrm{Z}_{\mathrm{j}} \in\{-1,1\}$ random i.i.d.
$X_{j} \equiv-Z_{j}^{T} \log A Z_{j}$
\Rightarrow (Central Limit Theorem)
X_{j} i.i.d., moreover $X_{j} \sim N(\mu, \sigma)$
with $\mu \equiv E(X)=-\operatorname{Tr} \log A$
and $\left.\sigma^{2} \equiv \operatorname{Var}(X)=2 \sum_{j \neq l}[\operatorname{Re} \log A)_{j l}\right]^{2}$

Noisy Determinant

- Bias in the noisy estimation : $\mathrm{E}[\exp (-\mathrm{X})]=\exp (\operatorname{Tr} \log \mathrm{A}) \exp \left(\sigma^{2} / 2\right)$
- Obvious way to reduce the bias is to take the average of n estimations:
$<X>=\left(X_{1}+X_{2}+\ldots+X_{n}\right) / n$
. $\Rightarrow \sigma^{2} \rightarrow \sigma^{2} / n$
- Expensive since $\sigma^{2} \sim$ Volume

Noisy Monte Carlo Algorithms

- Kennedy-Kuti algorithm: $\exp (-X) \approx 1-X$
- Works well for small changes
- Negative probabilities for arbitrary changes
- Kentucky algorithm (J oó-Horváth-Liu):
- Factors determinant into fractional flavours
- Noise becomes part of the state space
- Low acceptance and long autocorrelations

General Idea to Eliminate Bias

- Find an estimator $Y=Y\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ such that: $E[\exp (-Y)]=\exp (\operatorname{Tr} \log A)$
- Example: Y Gaussian with $\mathrm{EY}=\mu+\sigma^{2} / 2 \mathrm{n}, \operatorname{VarY}=\sigma^{2} / \mathrm{n}$, then $\mathrm{E}[\exp (-Y)]=\exp \left(-\mu-\sigma^{2} / 2 n\right) \exp \left(\sigma^{2} / 2 n\right)$
- Does such a function $Y=Y\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ exist?

Order Statistics

- Order sequence X_{1}, \ldots, X_{n} such that: $X_{(1)} \leq \ldots X_{(k)} \ldots \leq X_{(n)}$
$\Rightarrow X_{(k)}$ an order statistics
- Example: Median $X_{((n+1) / 2)}$ (n odd) $\mathrm{E} X_{((n+1) / 2)}=\mu$
- Idea: For $k>(n+1) / 2: E X_{(k)} \geq \mu$
- What is the value of k for no bias?

Order Statistics Distribution

Let U_{1}, \ldots, U_{m} be uniformly distributed

 in $(0,1)$ and $U_{(1)} \leq \ldots U_{(k)} \ldots \leq U_{(m)}$$\Rightarrow$
The marginal pdf of $U_{(k)}$ is:

$$
\left.f_{k}(x)=x^{k-1}(1-x)^{n-k} n!\Lambda(k-1)!/(n-k)!\right]
$$

Proof

For $U_{(k)}$ to lie in the interval $(x, x+\Delta)$ it is required that $k-1$ of the $U s$ lie to the left of \times, one lies in $(x, x+\Delta)$, and n - k lie to the right. To first order, the probability for this to happen is:

$$
f_{k}(x)=x^{k-1} \Delta(1-x)^{n-k} n!/[(k-1)!1!(n-k)!]
$$

where the factorial terms arise because we don't care which of the $U s$ lies in the specified intervals.

Formal Proof

Step 1. Find $F_{k}(x)=P\left(U_{(k)}<x\right)$ Step 2. Differentiate $F_{k}(x)$ w.r.t. x

Step 1. Construct Binomial Variates:

$$
\begin{aligned}
& Y_{n}=\omega_{1}+\omega_{2}+\ldots+\omega_{n} \\
& \omega_{i}=\mathrm{I}\left\{U_{i}<x\right\} \\
& \Rightarrow \\
& \quad F_{k}(x)= \\
& \quad P\left(Y_{n} \geq k\right)=\sum_{j=k, \ldots, n} C(n, j) x^{j}(1-x)^{n-j}
\end{aligned}
$$

Formal Proof

Step 2. Differentiate $F_{k}(x)$ w.r.t. x

$$
\begin{aligned}
& f_{k}(x)= \\
& \quad=\sum_{j=k, \ldots, n} C(n, j)\left[j x^{j-1}(1-x)^{n-j}-(n-j) x^{j}(1-x)^{n-1-j}\right] \\
& \quad=\sum_{j=k, \ldots, n}\left(T_{j-1}-T_{j}\right)
\end{aligned}
$$

where

$$
T_{j}=C(n, j)(n-j) x^{j}(1-x)^{n-1-j}
$$

Since $T_{n}=0$ the sum telescopes down to T_{k-1}, which is the required result.

What is the $X_{(k)}$ Distribution?

Let X_{l}, \ldots, X_{m} be Normally distributed with pdf $f(x)$, expectation μ and variance σ^{2}

Proposition.

$$
P\left(X_{k}<x\right) \equiv p(x)=1 / 2+1 / 2 \operatorname{erf}[(x-\mu) / \sigma \sqrt{ } 2]
$$

Theorem.
The marginal pdf of $X_{(k)}$ is:

$$
f_{k}(x)=f(x) p(x)^{k-1}[1-p(x)]^{n-k} n!/[(k-1)!/(n-k)!]
$$

Examples

Robust Statistics: Median
Extreme Value Theory: Maximum: $X_{(n)}$
Genralization of Central Limit Theorem for Tail Distributions. eg. Gumbel Distribution

$$
f(x)=\exp \left(-e^{-x}\right)
$$

Other Distributions, Fréchet, Weibull

Asymptotic Theory

- Let $k(\alpha)=[n \alpha]+1,0<\alpha<1$ $x(\alpha)$ a quantile of the normalized distribution of X :
- $\alpha=1 / 2+1 / 2 \operatorname{erf}[x(\alpha) / \sqrt{ } 2]$
\Rightarrow For large $\mathrm{n}: \mathrm{E}\left[\mathrm{X}_{\mathrm{k}(\alpha)}\right]=\mu+\mathrm{x}(\alpha) \sigma$

$$
\operatorname{Var}\left[X_{k(\alpha)}\right]=\sigma^{2} / n 2 \pi \alpha(1-\alpha) \exp \left[x(\alpha)^{2}\right]
$$

- Bias eliminated if:
- $x(\alpha)=\sigma / n \pi \alpha(1-\alpha) \exp \left[x(\alpha)^{2}\right]$
- For small $x(\alpha) \approx \pi \sigma / 4 n$

Noisy Metropolis Algorithm

- Propose a new configuration
- Compute $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ and find $\mathrm{k}(\alpha)$
- Accept/Reject with probability $\min \left\{1, \exp \left[-X_{(k(\alpha))}\right]\right\}$

Properties of the Algorithm

- Detailed Balance is satisfied in average
- N should be large enough for the asymptotic theory to hold
- σ is unknown: use S from data
. \Rightarrow error $\approx \exp [\sigma \times(\alpha)(\sigma / S-1)]$
- Use large sample size to control

Testing Algorithm

Schwinger Model on the Lattice

- $\mathrm{N}_{\mathrm{f}}=2$ staggered fermions
- 16x16 lattice
- Bare mass m = 0.01
- Coupling $\beta=5$
- Three simulations:
- 1. Exact deternimant
- 2. Noisy determinant $n=30$
- 3. Noisy determinant $n=40$

Conclusions

- A Noisy Algorithm without sign violations
- Applications:
- Global updating when possible
- Taking the square root for staggered simulations

