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Why Noisy Monte Carlo?

� Noisy Monte Carlo: A Monte Carlo 
simulation with extra noise

� Example: det A = det D(U’)/det D(U) = 
exp(Tr Log (A) )

� Log(A) difficult to evaluate
� But Z†log (A) Z, Z random easier task
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Noisy Determinant

If Zj ∈ {-1,1} random i.i.d.
Xj ≡ - Zj

T log A Zj

⇒ (Central Limit Theorem)
Xj i.i.d.,  moreover  Xj ~ N(µ,σ)
with µ ≡ E(E(X) = - Tr log A 
and σ 2 ≡ VarVar(X) = 2 Σj≠ l [Re(logA)jl]2
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Noisy Determinant

� Bias in the noisy estimation :      
E[exp(-X)] = exp(Tr log A) exp(σ2/2)

� Obvious way to reduce the bias is to 
take the average of n estimations:  
<X> = (X1 + X2 + …+ Xn) / n

� ⇒ σ2 → σ2/n
� Expensive since σ2 ~ Volume
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Noisy Monte Carlo Algorithms

• Kennedy-Kuti algorithm: exp(-X) ≈ 1 - X
� Works well for small changes
� Negative probabilities for arbitrary changes

• Kentucky algorithm (Joó-Horváth-Liu):
� Factors determinant into fractional flavours
� Noise becomes part of the state space
� Low acceptance and long autocorrelations
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General Idea to Eliminate Bias

� Find an estimator Y = Y(X1,X2,…,Xn) 
such that:  E[exp(-Y)] = exp(Tr log A)

� Example: Y Gaussian with 
EY = µ + σ2/2n ,  VarY = σ2/n  , then  
E[exp(-Y)] = exp(-µ - σ2/2n) exp(σ2/2n)

� Does such a function Y = Y(X1,X2,…,Xn)
exist?
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Order Statistics

� Order sequence X1,...,Xn such that:     
X(1) ≤ ... X(k) ...≤ X(n)
⇒ X(k) an order statistics

� Example: Median X((n+1)/2) (n odd) 
EX((n+1)/2) = µ

� Idea: For k > (n+1)/2:  EX(k) ≥ µ
� What is the value of k for no bias?
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Order Statistics Distribution

Let U1,...,Um be uniformly distributed  
in (0,1) and U(1) ≤ ... U(k) ...≤ U(m)

⇒

The marginal pdf of U(k) is:
fk(x) = xk-1 (1-x)n-k n!/[(k-1)!/(n-k)!]
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Proof

For U(k) to lie in the interval (x,x+∆) it is 
required that k-1 of the Us lie to the left of x, 
one lies in (x,x+∆), and n-k lie to the right. To 
first order, the probability for this to happen 
is:

fk(x) = xk-1 ∆ (1-x)n-k n!/[(k-1)! 1! (n-k)!]
where the factorial terms arise because we 
don't care which of the Us lies in the specified 
intervals. 
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Formal Proof
Step 1. Find Fk(x) = P(U(k) < x) 
Step 2. Differentiate Fk(x) w.r.t. x

Step 1. Construct Binomial Variates:
Yn = ω1 + ω2 + … + ωn

ωi = I{Ui < x}
⇒ Fk(x) = 

P(Yn ≥ k) = Σj=k,…,n C(n,j) xj (1-x)n-j
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Formal Proof
Step 2. Differentiate Fk(x) w.r.t. x

fk(x) =

= Σj=k,…,n C(n,j) [jxj-1 (1-x)n-j – (n-j) xj (1-x)n-1-j]

= Σj=k,…,n (Tj-1 – Tj)
where

Tj = C(n,j) (n-j) xj (1-x)n-1-j

Since Tn = 0 the sum telescopes down to Tk-1, 
which is the required result. 
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What is the X(k) Distribution ?
Let X1,...,Xm be Normally distributed with 
pdf f(x), expectation µ and variance σ2

Proposition.
P(Xk < x) ≡ p(x) = ½ + ½ erf [(x -µ )/σ√2]

Theorem.
The marginal pdf of X(k) is:
fk(x) = f(x) p(x)k-1 [1-p(x)]n-k n!/[(k-1)!/(n-k)!]
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Examples

Robust Statistics: Median
Extreme Value Theory: Maximum: X(n)

Genralization of Central Limit 
Theorem for Tail Distributions.
eg. Gumbel Distribution

f(x) = exp(-e-x)
Other Distributions, Fréchet, Weibull
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Asymptotic Theory

� Let k(α) = [nα] + 1, 0 < α < 1                
x(α) a quantile of the normalized distribution 
of X:
� α = ½ + ½ erf[x(α)/√2]
⇒For large n:E[Xk(α)] = µ + x(α) σ

Var[Xk(α)] = σ2/n 2π α(1-α) exp[x(α)2]

� Bias eliminated if:
� x(α) = σ/n π α(1-α) exp[x(α)2]
� For small x(α) ≈ πσ/4n
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Noisy Metropolis Algorithm

� Propose a new configuration
� Compute X1,X2,…,Xn and find k(α)
� Accept/Reject with probability          

min{1,exp[-X(k(α))]}
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Properties of the Algorithm

� Detailed Balance is satisfied in average
� N should be large enough for the 

asymptotic theory to hold
� σ is unknown: use S from data
� ⇒ error ≈ exp[σ x(α) (σ/S – 1)]
� Use large sample size to control
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Testing Algorithm

Schwinger Model on the Lattice
� Nf = 2 staggered fermions
� 16x16 lattice
� Bare mass m = 0.01
� Coupling β = 5
� Three simulations:

� 1. Exact deternimant
� 2. Noisy determinant n = 30
� 3. Noisy determinant n = 40
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Conclusions

� A Noisy Algorithm without sign 
violations

� Applications:
� Global updating when possible
� Taking the square root for staggered 

simulations


