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• Lattice gauge theory investigations of the deconfining phase
transition have mainly been limited to equilibrium studies.

• In nature deconfining transitions are governed by temperature
and/or expansion driven dynamics

– Early universe: slow cooling process
(10−5 − 10−6 >> 10−23s).

– Heavy ion collisions:
∗ cooling is of the order of some relaxation time scale

estimates (5− 10fm/c);
∗ rapid heating (quench) (1fm/c);
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Heavy Ion Collisions

The standard picture of heavy ion collisions (Anishetty, Koehler,
McLerran (1980) and Bjorken (1983)).
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Figure 1: Central collision of heavy ions followed by formation of fireballs

(target rest frame).

The projectile fragments outside the target.
Most of the baryon number is in the fragmentation region.
The target becomes compressed to an ellipse moving along the
longitudinal axes.
Central rapidity region: Heated plasma of zero baryon number.
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Bjorken Hydrodynamical Model

for the Central Region
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Figure 2: Fire-tunnel evolution.

The rarefraction front is formed at distances ∼ dnucleus and move
towards the center.
At ion separation ∼ dnucleus the amount of fluid undergoing the
longitudinal expansion decreases.
The remnants of the fluid expand radially and cool rapidly.
The characteristic time of evolution is 5− 10fm/c.
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Equilibration?

It is conjectured that rescattering inside the central rapidity region
may lead to equilibration.
If the number of rescatterings needed is ∼ 1, then typical times of
equilibration are:

τg ∼ 1
2
fm/c (gluons) (1)

τq ∼ 2fm/c (quarks) . (2)

This could lead to equilibration, if there were no strong dynamical
effects in the vacuum of the underlying field theory.
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Finite Temperature Field Theory

Based on the observation that quantum statistics formulation of a
d dimensional field theory at finite T

Z(T, V ) = Tre−H/T (3)

=
∑

φ

〈φ|e−H/T |φ〉 (4)

can be expressed as the PI representation for the transition
amplitude

〈φ1|e−iHt1 |φ0〉 =
∫ φ1

φ0

Dφ exp[i
∫ t1

0

dτL(φ, φ̇)] (5)

Z(T, V ) =
∫

periodic

Dφ exp[−
∫ 1/T

0

dτLE(φ, φ̇)] (6)
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Order Parameter

For pure lattice gauge theory at finite temperature the Polyakov
loop l is the confinement/deconfinement order parameter.

l(~x) = tr
Nt−1∏
m=0

U~x+mt̂,0 (7)

The symmetry group of the order parameter in the SU(3) gauge
theory is Z(3).
Symmetric (confined) phase 〈l〉 = 0;
Broken (deconfined) phase 〈l〉 6= 0.
The transition is weak 1st order.
Quarks smooth out this behavior. At low density the QCD
transition is most likely a rapid crossover.
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Dynamics

• The equilibrium theory is time-independent.

• A full non-equilibrium description (non-diagonal density
matrix) causes unsurmountable technical difficulties.

Time may be reintroduced!

• Different dynamical universality classes (defined by equations
of motions) may be explored.

• We study heatbath dynamics, which belongs to Model A in the
material science classification (e.g. Chaikin and Lubensky,
Principles of condensed matter physics, table 8.6.1, p.467).

• Dumitru and Pisarski (2001) add a kinetic term to an effective
model of Polyakov loops ∼ |∂µl|2, which may then allow for
simulations in Minkowski space.
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The Effective Models

• LQCD, but it is difficult to simulate.

• Effective spin model for the Polyakov loops (Svetitsky and
Yaffe (1982), and a lot of subsequent work)
The 3d 3-state Potts model:

H = −J
∑
<ij>

δni,nj + h
∑

i

δni,0, (8)

βspin = J/2kT . The external magnetic field h accounts for the
presence of quarks (h ∼ 1/m).
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QCD and Spin Model Temperatures

The QCD temperature T is given by

T =
1

Nta(g0)
. (9)

For pure SU(3) gluodynamics

a(g0) =
1

ΛL
exp

(
− 1

2β0g2
0

)
=

1
ΛL

exp
(
−βLGT

β0

)
. (10)

Therefore βLGT ∼ βspin.

Thus T is monotonously increasing with βspin.
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Simulated Models

• The 2D Potts models for which a number of rigorous results
are known (Baxter (1973)).

• Test bed in 2D: The weak first order transition of the 5-state
Potts model. Also studied: The 2-, 4-, 10-state Potts models,
corresponding to a 2nd order, a ”strong” 2nd order and a
strong first order phase transition.
(Berg, Heller, Meyer-Ortmanns, Veltsky, PRD 69, 034501
(2004) [hep-lat/0309130])

• The 3d 3-state Potts model with and without external
magnetic field.
(Berg, Meyer-Ortmanns, Veltsky, hep-lat/0405011)
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Hysteresis and Quench

We study the hysteresis 4β = 2(βmax−βmin)
nβ L2 , 4β′ = 2(βmax−βmin)

n′
β

L2
0

,

(L0 = 20), and quench dynamics β = βmin → βmax.
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Figure 3: Rescaled energy (C(q) = q/(q−1)) hysteresis curves for nβ = 1

in 2d. From left to right q = 2, 4, 5 and 10.
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Dynamical Latent Heat
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Figure 4: Latent heat estimates from hysteresis curves ∆el(L) = ∆el+
a1
L

.

Heat-bath (nβ = 1).

The method gives estimates of βc comparable to equilibrium data.
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q βc α 4el βmin βmax 4el

2 0.440687 0 0 0.2 1.0 0.0153 (07)

4 0.549306 2/3 0 0.2 1.0 0.0907 (11)

5 0.587179 1 0.031072 0.4 1.2 0.1402 (12)

10 0.713031 1 0.348025 0.4 1.2 0.3482 (16)

Table 1: The phase transition temperatures βc = 1/Tc, the specific
heat exponent α and the latent heats of selected q-state Potts models
in two dimensions. For the latent heats the negative energy per
link 4el is given and 4el is a dynamical latent heat estimate from
hysteresis cycles: ≥ equilibrium latent heat.
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Other Observables

• stochastic cluster properties

– volume, surface, gyration radius

– maximum volume and surface

– distribution of these quantities

• percolation

• structure function:

S(~k, t) = 1
N2

s

∑q−1
q0=0

〈∣∣∣∑~r δσ(~r,t),q0 exp[i~k~r]
∣∣∣2〉− δ~k,0

∑
q0

m2
q0

,

where mq0 = 〈δσ(~r,t),q0〉
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Scenarios of Phase Transitions

• Nucleation is an instability against finite amplitude, localized
fluctuations. It is dominated by the growth of the largest
clusters.

– Has an activation barrier.

– Metastability.

• Spinodal decomposition is an instability against infinitesimal
amplitude, nonlocalized fluctuations.

– No activation energy.

– Unstable region.

– Linear Cahn-Hilliard theory predicts an initial exponential
growth of S(~k, t).
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Cluster Definition

• Geometric cluster: Percolation coincides with the phase
transition in 2D, but not 3D. Percolation exponents differ from
critical exponents in 2D and 3D.

• Fortuin-Kasteleyn (FK) clusters: complete correspondence of
critical and percolation properties. The Ising and Z(3) models
are studied in the equilibrium by MC simulations (Fortunato
and Satz (2001)).

FK or stochastic clusters remove artificial correlation by
introducing the bond probability

p = 1− exp(−J/kT ). (11)
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2D Models

Largest Connected Cluster Surface Smax
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Figure 5: The largest cluster surface for the 10-state (left) and 2-
state (right) Potts models.
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Figure 6: The largest connected cluster surface for equilibrium simu-
lations. The strong 1st order transition does not favor the interfaces.
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Percolation
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Figure 7: The percolation strength and the maximum surface; q=5,4
Potts models, L=100, nβ = 1
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Figure 8: The largest cluster surface from dynamical simulations
with nβ = 1 (100× 100 lattices are shown).
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Structure Functions
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Figure 9: The structure function Sk1(β) for the 10-state (left) and
2-state (right) Potts models and fast (almost a quench) nβ = 1
dynamics. Large peaks are now only on the disorder → order
(confinement → deconfinement) β → βmax half-cycle. Equilibrium
is not reached at βmax
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Figure 10: The structure function Sk1(β) from nβ = 1 dynamical
simulations on 802 lattices together with their equilibrium values.
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3-D 3-state Potts Model
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Figure 11: The finite size estimates of the latent heat for n′β = 1, 4, 8
for the 3D 3-state Potts model at h = 0. The equilibrium value is
∆el = 0.05354(17)
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Structure Functions – Quench
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Figure 12: Structure function Sk for the β = 0.2 → 0.3 3d 3-state
Potts model quench at zero field on a 403 lattice.
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Figure 14: Determination of kc for the 3D Potts model at zero field:
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Structure Functions – Hysteresis
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Figure 15: The structure function Sk1(β) for the 3d 3-state Potts
model hysteresis in zero (left) and h = 0.0005 (right) external mag-
netic field.
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Figure 16: Structure function Sk1 maxima versus lattice size for the
n′β = 1 dynamics of the 3D 3-state Potts model without an external
magnetic field (h = 0) and in the cross-over region (h = 0.0005).
Asymptotic fits a1 +a2L

x with exponents x = 1 (h = 0) and x = −1
(h = 0.0005) are consistent.
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Evolution of Largest Domains – Quench
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Figure 17: Time evolution of the largest domains of each of the
trialities. Quench β = 0.2 → 0.3 at h = 0 and h = 0.0005.
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Figure 18: Geometrical and FK domains of the 3d 3-state Potts
model quenched from β = 0.2 to βf = 0.3 on a 403 lattice.
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Summary and Conclusions

• Hysteresis effects may create a dynamical latent heat for 2nd
order phase transitions.

• FK clusters give insight into the dynamics of the transition.

– Smax is sensitive to the dynamics and related to the
percolation of clusters. The L →∞ limit is not (yet) under
control.

– Domains of different trialities can prevent equilibration in
the ordered phase

• Structure function allows to identify the transition scenario.
We conclude that the transition from the disordered to the
ordered phase proceeds by spinodal decomposition.

• Dynamics effects in our models are strong. Interfaces between
domain may leed to an enhancement of low energy gluons.
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