Conformational Transitions of Lattice Heteropolymers

Michael Bachmann

Institut für Theoretische Physik, Universität Leipzig

Workshop LEILAT04, 3 June 2004

Computational Quantum Field Theory

Proteins

Sequence ↓ Conformation ↓ Function

Protein sequences are encoded in the DNA.

- Polypeptides: $N\sim 20-4000$ amino acids covalently linked
- by peptide bonds20 amino acids
 - $\Rightarrow 20^N$ possible sequences
- but: only $\sim 10^5$ functional proteins (human)

Protein synthesis through ribosome. Sequence, not conformation!!

Proteins

Sequence ↓ Conformation ↓ Function

Sequence determines structure.

- Spontaneous folding into native conformation (Anfinsen's experiments)
- Path(s) to the fold: energydriven stochastic search
- Time scale of protein folding: milliseconds to seconds
- Metastability (functiondependent)

Free energy landscape: rugged, with deep funnel-like global minimum.

Order Parameter, Reaction Coordinate, Overlap, ...

Proteins

Sequence ↓ Conformation ↓ Function

Proteins are involved in almost all cell processes.

- Transport (channels, pores)
- Cell stability (actin filaments)
- Catalytic activity (enzymes)
- "Molecular motors" (DNA polymerase, ATP synthase)
- ... many more functions

3D structure determines functionality.

Aquaporin:

3 000 000 000 water molecules / sec.

Proteins – Open Questions

General questions:

- How does nature select the *relevant* sequences?
- How does the protein *spontaneously* find the path to the fold?
- What is the relationship between sequence and native conformation, i.e., how is the structural information encoded in the sequence of the amino acids?
- How do these nanoscale machines work?

The direct folding problem:

Given the sequence: What is the native conformation (= function)?

The inverse folding problem: (... of enormous pharmaceutical interest) Given the target structure (= function): Which sequences of amino acids fold into this conformation ("drug design")?

Folding kinetics: Computer simulations (in 10 to 20 years...)

HP lattice proteins:

Lattice heteropolymers with sequence of two types of monomers:

HP protein folding principle: screening of the hydrophobic core from the (fictitious) aqueous environment by the polar residues

HP model (Dill, 1985); only hydrophobic next-neighbour interaction:

$$E=-\sum_{\langle i,j< i-1
angle} \sigma_i\sigma_j, \quad \sigma_i=\left\{egin{array}{cc} 1 & ext{hydrophobic}\ 0 & ext{polar} \end{array}
ight.$$

Designing Sequences: Nondegeneracy of the ground-state conformation **Exemplified 14mers on the s.c. lattice:** 1 designing, 3 nondesigning (hydrophobicity $n_H = 8$, energy minimum $E_{\min} = -8$)

0.8 $1\bar{4}.4$ 14.30.6 14 $rac{C_V(T)}{N}$ 0.4 $14.1 = HPHPH_2PHPH_2P_2H$ 0.2 $14.2 = H_2P_2HPHPH_2PHPH$ $14.3 = H_2 PHPHP_2 HPHPH_2$ Sequence 14.1 $14.4 = H_2 PHP_2 HPHPH_2 PH$ 0.00.20.10.3 0.4 0.5 $0.6 \quad 0.7 \quad 0.8 \quad 0.9$ 1.00.0 **Specific heat:** pronounced low-temperature peak for the designing 14mer \implies ground state – globule transition

[M.B., W. Janke, APP (2003)]

Systematic and exact study on the s.c. lattice:

Enumeration of *all* **sequences and conformations with up to 19 monomers**

Numbers of all nonredundant (S_N) and designing sequences (S_N^D) :

\overline{N}	12	13	14	15	16	17	18	19
S_N ($ imes 10^3$)	2.1	4.2	8.3	17	33	66	131	263
$oldsymbol{S_N^D}$	2	0	1	1	1	8	29	47

Number of all (C_N) and designable conformations (C_N^D) :

\overline{N}	12	13	14	15	16	17	18	19
C_N (×10 ⁶)	42	199	944	4,469	21,175	100,122	473,730	2,237,724
$C_N^{ m D}$	96	0	48	48	48	384	1,344	2,016

Total number of states: $M_N \sim 2^N \times \mu^N N^{\gamma-1}$ ($\mu_{\rm s.c.} \approx 4.68$, $\gamma \approx 1.16$) $N = 19: M_N = \mathcal{O}(10^{18}) \Rightarrow 1.5 \ CPU \ years$ (AMD Athlon 1.5 GHz)

Example: 527 sequences with 18 monomers (all $E_{\min} = -9$, $m_H = 8$): 525 nondesigning, 2 designing

Mean energy:

Specific heat:

(solid: designing, dashed: upper and lower bounds for nondesigning sequences) designing sequences: strong low-temperature transition nondesigning sequences: rather weak or no low-temperature transition [R. Schiemann, M.B., W. Janke, q-bio/0405009 (2004)]

Sequences with N > 30 monomers: sophisticated methods requiredNew algorithm: multicanonical chain growth[M.B., W. Janke, PRL (2003)] \Rightarrow Iterative method for the estimation of the density of states

Exemplified 42mer:

Lattice model for parallel β -helix of pectate lyase C (Yue, Dill, 1995)

Ground-state properties of the lattice model:

- Minimum energy $E_{\min} = -34$, only 4-fold degeneracy
- Native conformations contain two parallel helices

Energetic and conformational fluctuations:

Three "phases" separated by two conformational transitions: compact hydrophobic core states, maximally compact globules, random coils [M.B., W. Janke, JCP (2004)]

Summary HP model:

- Two conformational transitions:
 hydrophobic core globules (...traps) coils
 if the second second
- Qualitative comparison with natural heteropolymers:
- \Rightarrow Hydrophobic effect
- ⇒ Small number of relevant (*designing*) sequences
- \Rightarrow Small number of different designable conformations
- Quantitative comparison impossible: lattice effects, insufficient volume exclusion, no specific interactions (e.g. hydrogen bonds)

- ... the collaboration with:
- Wolfhard Janke, Thomas Vogel, Stefan Schnabel (Universität Leipzig)
- Reinhard Schiemann (ETH Zürich)
- Handan Arkın (Hacettepe University Ankara)
- Hsiao-Ping Hsu, Peter Grassberger (NIC, Forschungszentrum Jülich)