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Increasing randomness

Junior Research Group
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1) Complex networks
2) Thin random graphs

(1)

(2)

(3) Fat random graphs

(4) Poissonian Voronoi-Delaunay triangulations
(5)

5) Coupling matter to random graphs

Junior Research Group
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Complex networks

General graph characteristics

Co-ordination number
distribution:

P(q)

Clustering coefficient:

Clqi) = ti/|ai(q: — 1)/2]

Junior Research Group

Intervertex distance: /;;

O(N) ~ £/ dn

Small worlds:  dp = o0, ¢(N)~InN

Betweenness centrality, giant connected component, ...
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Complex networks
Erdds-Rényi random graphs

Poissonian coordination
numbers:

P(q) = e ‘9{(g)?/q

i.e., maximally random graphs
under the single constraint

Junior Research Group

(q) = o

Formation of giant component:
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Complex networks

Uncorrelated networks with arbitrary degrees

e.g., generated by equilibrium re-wiring of
random graphs

Critical version has power-law coordination number distribution:
P(q) ~q"

which is often seen in real networks

Junior Research Group

Correlated networks:

Random under the constraint of fixed P(q, q')
-> still tree-like

Evolving networks: preferential attachment (Barabasi-Albert) leading to self-organized
criticality, power-law degrees

Short-cuts in a regular lattice (Watts-Strogatz)
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Complex networks

General properties of this class

Equilibrium models: maximally random under the constraint of P(q) only or of

P(g) and P(a,q9)
Growing networks may auto-tune to criticality

Usually small-world, i.e., d = oo
Locally tree-like: no short loops
Not enough structure to define a surface

Junior Research Group

mmm) Talk by B. Waclaw today

R. Albert and A. Barabasi, Statistical mechanics of complex
networks, Rev. Mod. Phys. 74 (2002) 47.

S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes,
Critical phenomena in complex networks, to appear in Rev.
Mod. Phys.
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1) Complex networks
2) Thin random graphs

(1)

(2)

(3) Fat random graphs

(4) Poissonian Voronoi-Delaunay triangulations
(5)

5) Coupling matter to random graphs
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Thin random graphs
Definition

Consider the integral

27_(_2 2N—|—1 / o eXp __¢2 g¢3]

0 o 8 oo

1 849 16g° 649> 6492

D_(LQD_@

2‘7g3 2893 210 3 28 3

Junior Research Group

><_Q_>O<f<

29 12892
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Thin random graphs
Definition

Consider the integral

N, = 2N+1/ —exp——cb + g¢3]

27rz

In the saddle-point limit n — oo, after a rescaling ¢ — ¢/g and Gaussian
integration, one finds

N, =~ (n/e)"S™"(—2rn detS”)~1/2

Junior Research Group

Here, S = ¢?/2 — ¢3/6, S = S(¢) and ¢ is the dominant saddle point,
i.e., a solution of
0S

d¢
Q 2 Q! :
2, S = 3 —S" =1 one finds

- (5) "

=0
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Thin graphs

Properties

Very similar to Erdés-Rényi random graphs, but

Fixed coordination number, nevertheless still

Disorder in distribution of loop lengths

Maximally random network under the constraint of constant degree
Same formalism holds for any k-regular class of graphs

Again no/few short loops (smaller than In /V)

Drop-in replacement for calculations on the Bethe lattice, since no boundary
effects

Junior Research Group

Computational treatment:

Sampling with Monte Carlo simulation
through re-wiring of links

=
' (@)
i)
G
L
—
(7))
-]
|
L
-
et
<
w
-
(D]
o
)
=
v
P
Q
ol
-
o
O

March 31, 2008 Martin Weigel, Mainz University



Thin graphs

Properties

Very similar to Erdés-Rényi random graphs, but

Fixed coordination number, nevertheless still

Disorder in distribution of loop lengths

Maximally random network under the constraint of constant degree
Same formalism holds for any k-regular class of graphs
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Drop-in replacement for calculations on the Bethe lattice, since no boundary
effects
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Computational treatment:

Sampling with Monte Carlo simulation
through re-wiring of links
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1) Complex networks
2) Thin random graphs

(1)

(2)

(3) Fat random graphs

(4) Poissonian Voronoi-Delaunay triangulations
(5)

5) Coupling matter to random graphs
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Fat Graphs

Definition

Now, consider the matrix integral

W(g,N) = / B . Z 1 (w_) (Tegy

Where now ¢ is an N x N Hermitian matrix and

dp =[] dRegap || dImpag

a<p a<f

Junior Research Group

The propagator is
(Bap Parpr) = /d¢ e” 2 2ap |Pasl Doy Pargr = Gaprdgar

%)
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Fat Graphs

Definition

Now, consider the matrix integral

W(g,N) — /dqbe—%”ﬁwjugjﬁﬂczﬁ Z 1 (3\/_) <Trq§3k>

Where now ¢ is an A/ x N Hermitian matrix and

do = H d Re ¢np H dIm ¢qp

a<p a<f

Junior Research Group

The propagator is
(Bap Parpr) = /d¢ e” 2 2ap |Pasl Doy Pargr = Gaprdgar

Weight of each graph is

No(T) A\fNo(T)—N2(T)/2 _~  _  Na(T)A/x(T) _ =
gN e 0 N

i.e., in the limit ' — oo one counts planar triangulations of size N
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Fat graphs
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Fat graphs
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Fat graphs

Some properties

m Fattening of propagators to ribbons generates orientability: surface instead of simple
graph
m Duality: qb3graphs and triangulations, similarly qb4 graphs and quadrangulations

NN
Bl

Junior Research Group
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Fat graphs

Some properties

Fattening of propagators to ribbons generates orientability: surface instead of simple
graph

Duality: qb3 graphs and triangulations, similarly qb4 graphs and quadrangulations
Coordination number distribution

3\? (¢ —2)(2¢ —2)!
16 q'(g —1)!
which decays exponentially for large q
Naturally many short loops

Average distance

Junior Research Group

UN) ~ £

with dp, = 4, i.e., not small-world, but still “smaller” than regular lattice
Large number of exact results due to matrix model and combinatorial techniques
Coordination numbers are correlated algebraically,

(0gidq;) ~ dist(,5)
with a ~ 2
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Fat graphs

Numerical simulations

For a a general simplicial complex, define the (k,l) moves

al...albl...bk—>a1...alb1...bk,

(1.4) (4,1)

Junior Research Group

These can be shown to be ergodic in the space of homeomorphic simplicial
manifolds (for d < 4).
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Fat graphs

Numerical simulations

In two dimensions:

P e

(2,2) (1,3), 3,1)

~ A

Canonical move Grand-canonical move

Junior Research Group

Canonical move alone is ergodic for simulations in the
canonical ensemble.
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Fat graphs

Numerical simulations

What about ¢* graphs and quadrangulations?

_>

' (1,3), (3,1)

-

Canonical move Grand-canonical move

Moves not ergodic in general!

March 31, 2008 Martin Weigel, Mainz University



Fat graphs

Numerical simulations

What about ¢* graphs and quadrangulations?

Junior Research Group
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Fat graphs

Numerical simulations

What about ¢* graphs and quadrangulations?

‘ One needs two-link flip to restore ergodicity

Junior Research Group
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Fat graphs

Numerical simulations

Non-local dynamics: “minimal-neck baby universe surgery”

Junior Research Group

J. Ambjgrn, B. Durhuus, and T. Jonsson, Quantum Geometry — A
Statistical Field Theory Approach (Cambridge University Press,
Cambridge, 1997).

J. Ambjgrn, M. Carfora, and A. Marzuoli, The Geometry of
Dynamical Triangulations (Springer, Berlin, 1997).

=
ﬂD
i)
G
L
—
(7))
-]
|
L
-
et
<
w
-
(D]
o
)
=
v
P
Q
ol
-
o
O

March 31, 2008 Martin Weigel, Mainz University



1) Complex networks
2) Thin random graphs

(1)

(2)

(3) Fat random graphs

(4) Poissonian Voronoi-Delaunay triangulations
()

5) Coupling matter to random graphs

Junior Research Group
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Poissonian Voronoi-Delaunay triangulations

Construction

Generalize crystallographic Wigner-Seitz construction to random
arrangement of points

Junior Research Group

Delaunay triangulation
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“Complex Systems with Frustration”

Construction

March 31, 2008

Poissonian Voronoi-Delaunay triangulations

Martin Weigel, Mainz University 35 MAINZ



Poissonian Voronoi-Delaunay triangulations

Some properties

Statistics are found to be surprisingly complex, only few exact results

Recent studies provided asymptotic expansion of coordination number distribution
for the planar case

1
In P(q) = —2¢Ing + gIn(2re?) — —In(2°7°C™?q) + O(¢~'/?)

i.e., asymptotically exponential

Exponentially decaying correlations of the coordination numbers
Many short loops, not small world, dj, = 2

Aboav-Weaire law

Junior Research Group

m(q) = (6 —a) +b/q

“many-sided cells tend to have few-sided neighbors and vice versa”
from the asymptotic expansion, one instead finds

m(q) =4+3/m/q+

Also a number of results on the spatial geometry (cell diameter, surface etc.)
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Poissonian Voronoi-Delaunay triangulations

Generation

Naive method using plane intersections: O(n?)
Adaptive modification of regular triangulation: O(n?)
Add generators one by one: O(n?)
Divide-and-conquer technique: O(nlnn)

Plane sweep method: O(nlnn)

Junior Research Group

A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial
Tessallations — Concepts and Applications of Voronoi Diagrams
(Wiley, Chichester, 2000).

H.J. Hilhorst and P. Calka, Random line tessellations of the
plane: statistical properties of many-sided cells, Preprint
arXiv:0802.1869.
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1) Complex networks
2) Thin random graphs

(1)

(2)

(3) Fat random graphs

(4) Poissonian Voronoi-Delaunay triangulations
(5)

5) Coupling matter to random graphs

Junior Research Group
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Coupling matter to random graphs

Effects of coupling spin models to random graphs instead of regular lattices:

m For sufficient connectivity, ordered phase should persist (at least for ferromagnets)
m Order of transition and universality class might change:
e Regqular lattice: Harris criterion

or(J) ~ R™? = g¢(J) ~ Y2~ v

Junior Research Group
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Coupling matter to random graphs

Effects of coupling spin models to random graphs instead of regular lattices:

m For sufficient connectivity, ordered phase should persist (at least for ferromagnets)
m Order of transition and universality class might change:
e Regqular lattice: Harris criterion

or(J) ~ R™? = g¢(J) ~ Y2~ v

relevant if vd/2 < lora >0

e Finite-dimensional random graph: consider average coordination number in patch of
size R,

JR) = 7 D0

then,
or(J) = (|J(R) = Jol)/ Jo ~ (B(R))~ () ~ R=(1=)

disorder is relevant if dpv(1 — w) > 1

Wandering exponent w is related to correlation function exponent a as
w=1—a/2dp

March 31, 2008 Martin Weigel, Mainz University



Coupling matter to random graphs

Disorder

/\

Annealed Quenched

Uncorrelated Correlated

Junior Research Group

Harris criterion: Luck criterion:
a>0 (1-o)/(2-a) <

- random bond model - QG graphs

- Voronoi/Delaunay
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Coupling matter to random graphs

Quenched case

Complex networks

m |n general very different from finite-dimensional graphs since diameter grows
logarithmically (small worlds), but correlation length usually diverges algebraically

= Mean-field if all moments of P(q) finite

m Deviation from mean-field, including non-universal exponents and infinite-order
transitions for divergent moments

Thin graphs

m Mean-field since asymptotically equivalent to Bethe lattice
m E.g., for Ising model

dé. do>_
Zn(B) X N T 27 f AZnl / 2mv/det K +det ap(=5),

March 31, 2008 Martin Weigel, Mainz University
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Coupling matter to random graphs

Quenched case

Fat graphs

= Wandering exponent found to be w = 3/4, i.e., disorder relevant for o > —2

m Confirmed by exact result for percolation and numerical results forq =2, 3, 4
Potts models

m First-order transition for q > 4 softened to second order

Voronoi-Delaunay triangulations

m No exact results

m Simulations yield unchanged universality class for Ising in 2D (o« = 0) and 3D
(asmall)

m 3-State Potts model with v = 1 / 3 also yields unchanged exponents, in apparent
contradiction to the relevance criterion

March 31, 2008 Martin Weigel, Mainz University
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Coupling matter to random graphs

Annealed fat graphs

Ferromagnet

Dressing of conformal weights according to KPZ/DDK formula

V1—c+24A — /1 —c
V2D —c—+1—c

A =

well understood

Antiferromagnet

New phenomena resulting from back-reaction of matter onto graph structure
(adaptive graph):
m Transition in the universality class of the FM case to Néel state for bipartite graphs

m Complete wipe-out of transition in other cases

m Infinite-order transition to magnetic Néel state combined with bipartite graph state in
third cases

March 31, 2008 Martin Weigel, Mainz University



Conclusions

Compared to regular lattices, random structures as modelled by random graphs exhibit a
host of novel phenomena (to be) explored by statistical physicists

Many more examples than those covered here, e.g., trees, combs, brushes, percolation
clusters, polymers and flux lines, ...

Many of the graph ensembles considered are attractive subjects since they are amenable
to analytical treatment as well as numerical simulations

Fat graphs and related models interesting indermediates between regular lattices and
(infinite-dimensional, small world) random graphs

Junior Research Group

Current focus of research:

e Matter-graph back-reaction, adaptive graphs, annealed averages
e Dynamics on graphs and networks

e Evolving networks, non-equilibrium effects
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