RANDOMLY DILUTED MODELS

Ferromagnets and antiferromagnets are systems which show a high-

temperature paramagnetic phase and a low-temperature ferromagnetic
phase.

They are characterized by considering the behavior of the MAGNETIZA-
TION. If the material is placed in an external magnetic field H and the

temperature is sufficiently low, the system shows a spontaneous magnetiza-
tion.

In practice: for |[H| — 0

M -0 for T > T,
M — My(T) for T' < T,

T, is called Curie temperature.

NOTE: the magnetization cannot be measured directly in experiments. Usu-
ally, one measures some indirect effect which is related to the presence of the
magnetization. For instance, to verify the 2D Ising behavior in thin films,
one can send ions on the film and measure the polarization of the reflected
beam: P «x M, so that P # 0 below T, and P = 0 above T,.

Close to T some features are UNIVERSAL, i.e. they do not depend on
the specific material one is considering, but only on some general properties:
1. space dimension,

2. symmetry of the Hamiltonian,

3. symmetry of the ground state,

4. range of the interactions.

Moreover, the presence of disorder may change the critical behavior.



Critical exponents are a UNIVERSAL feature of continuous transitions.
For instance, one defines an exponent 5 from the behavior of the magnetiza-
tion for T — T,, T < T.:

M(T) = (T, - T)?

Other scaling relations:

X=T-T"
E=|T—-T|™"
Here x is the magnetic susceptibility defined by

oM
X— aH’

while { measures the spatial correlations and can be measured in scattering
experiments. If the system is ferromagnetic and S(q) is the structure factor
normalized so that S(0) = 1, then for q — 0,

S(a) =1 - ¢’ + O(¢").
The exponents (3, v, and v are UNIVERSAL.



(Anti)-ferromagnetic materials are usually modeled by considering:
1. Heisenberg spins S;, where 7 labels a lattice site;
2. a Hamiltonian given by

H=-Y JjSi-Sj+Dx Y S+ Deupic _St;+...
ij { i

OBSERVATIONS:

1. The Heisenberg spins are quantum objects. However, since the Curie
transition is a finite-temperature transition, quantum effects are irrelevant.
Roughly: the spacing among the quantum levels is much smaller than the
thermal energy kgT,. Thus, we can disregard the energy quantization and
take the classical limit. Thus, in order to determine universal properties (and
only for that) we can assume S; to be a unit three-component vector.

2. The first term is the exchange interaction, which is a pure quantum effect
(it is a consequence of the Pauli exclusion principle). It is of short-range
nature and thus it is enough to consider nearest-neighbor couplings.
NOTE: the exchange interaction should not be confused with the dipole-
dipole interaction which is of long-range nature. In “classical’ ferromagnets,
like Fe and Ni, the dipolar interaction is much smaller than the exchange
interaction and can be neglected unless one is considering temperatures very
close to the Curie temperature (much closer than those obtained currently in
labs). But, there are materials (for instance, some Gd compounds) in which
dipolar interactions are important. In these systems, the critical behavior is
different from that we are going to describe.

3. The terms proportional to Di; and Deypic are anisotropy terms that are
due to the presence of a lattice structure.



4. Ising systems are those in which Dis < 0, so that spins tend to align along
the z-axis (uniaxial systems). In this case the critical modes are associated
with the sign of the z-component of the spin. Thus, we can further sim-
plify the Hamiltonian, assuming S; = (0,0, 0;), 0; = 1. The Hamiltonian
becomes (Ising Hamiltonian)

H = Z JijO’iO'j

More formally: the critical behavior is independent of Dy as long as D
is negative. Thus, we consider the limit Dj; — —oo. In this limit the
identification is rigorous.

The critical behavior of Ising systems is well known and the critical exponents
are known exactly in 2D and to high precision in 3D:

2D : v=1 y="7/4 B=1/8
3D:  v=0.6301(4) ~=12372(5) B =0.3265(3)

NOTE: For Di; = 0 and D > 0 we obtain a different critical behavior:

1. For D = 0 we obtain a Heisenberg system (Fe and Ni are Heisenberg
systems with good precision).

2. For Dy; > 0 spins magnetize in a plane orthogonal to the z-axis (easy
plane) and the corresponding universality class is called XY universality
class. In this case the relevant components are those in the zy plane and
thus we can replace S; with a two-dimensional spin.

Heisenberg systems and XY systems have different critical exponents.
In 3D:

XY v=06716(3) ~=13177(5) B = 0.3485(9);
Heisenberg v = 0.7112(5) v =1.3960(9) [ = 0.3689(3).



Introducing the dilution

Consider a ferromagnetic system and introduce vacancies. In practice this
can be obtained by replacing some of the magnetic atoms with nonmagnetic
ones. For instance, iron difluoride FeF, and manganese difluoride MnF, are
uniaxial antiferromagnets whose critical behavior is well described by the
Ising universality class. A dilute material is obtained by replacing the mag-

netic ions with nonmagnetic ones, for instance with zinc, obtaining mixtures

QUESTION: Does the introduction of dilution change the universality
class?

RESULTS FOR DILUTE ISING SYSTEMS

material concentration ~y v «@ J5]
(1986) FeyZn;_,Fo x = 0.46 1.33(2) 0.69(3)
(1986) Mn,Zn;_,Fq z=0.75 1.364(76) 0.715(35)
(1988) Fe,Zn;_,Fy =09 0.350(9)
(1988) Mn,Zn,_,Fy z = 0.40,0.55,0.83 —0.09(3)
(1988) Mn,Zn;_,Fq z=0.5 0.33(2)
(1997) FeyZn;_,Fo =05 0.36(2)
(1998) Fe,Zny_,Fy z=0.93 —0.10(2)
(1999) FeyZn;_,Fo x=0.93 1.34(6) 0.70(2)

Ising values:

v=12372(5) v =06301(4) a=0.1096(5) @B =0.3265(3).

Exponents are clearly different!! Dilution changes the universality
class.



RESULTS FOR DILUTE HEISENBERG SYSTEMS

Material ~ Jé] )
1994 Fe13Nig7BiyoSi 1.386(12) 0.367(15) 4.50(5)
1994 Fey6NigyBi1oSi 1.386(14) 0.360(15) 4.86(4)
1995 FeyoNigoP14Bs 1.386(10) 0.367(10) 4.77(5)
1995 Fe40Ni40P14B6 1.385(10) 0.364(5) 4.79 (5)
1997 FegZro 1.383(4) 0.366(4) 4.75(5)
1997 FeggCoZr g 1.385(5) 0.368(6) 4.80(4)
1997 Fegg CoaZr10 1.389(6) 0.363(5) 4.81(5)
1997 FegyCogZro 1.386(6) 0.370(5) 4.84(5)
1999 Fey gsMn; 15Si 1.543(20) 0.408(60) 4.74(7)
1999 Fe; 50Mn; 50Si 1.274(60) 0.383(10) 4.45(19)
1999 MnCrl_gIn0_184 1.39(1) 036(1) 4.814(14:)
1999 Mncr1.31n0,284 1.39(1) 0.36(1) 4.795(10)
2000 Feg6Mn4Zr10 1.381 0.361
2000 FegaoMngZrig 1.367 0.363
2001 FegsMngZrig 1.37(3) 0.359 4.81(4)
2001 Fer4Mny6Zr1g 1.39(5) 0.361 4.86(3)

Pure Heisenberg systems:

v=13960(9) B =03689(3) 6=4.783(3).

Exponents are not different!! Dilution does not change the univer-
sality class.



HARRIS CRITERION
Consider a system with random dilution:

e If the specific-heat exponent a is POSITIVE, random dilution
CHANGES the universality class of the pure system.

o If the specific-heat exponent a is NEGATIVE, random dilution
DOES NOT CHANGE the universality class of the pure system.

CONSEQUENCES:

XY and Heisenberg systems have a negative specific-heat exponent. Hence,
dilution does not change the leading critical behavior (but scaling corrections
are different!).

Ising systems have a positive specific-heat exponent. Hence, dilution changes
the leading critical behavior.

Interesting case: 2D Ising model. ‘
In this case a = 0 and the specific heat diverges logarithmically. Dilution is
marginal and induces logarithmic corrections:

[t

< Clogli) 2



MODELS: the random-site dilute model

Consider the pure (Ising or XY or Heisenberg) model on a lattice (say cubic
lattice) and randomly take out some spins. Physically, we are substituting
magnetic ions with non-magnetic ones.

Hamiltonian:

H == pipioio;
(is)

The sum is extended over all lattice nearest neighbors as in the usual Ising
model.

pi is the dilution variable that takes values p; = 1,0 with probability:

N Ny if p; = 1 (magnetic site);
Prob(ps) = P(pi) = { 1—p if p; = 0 (empty, nonmagnetic site).

In a pure system of course p = 1.



Averaging over disorder

Two possibilities: Annealed average, Quenched average.

e Annealed: the position of the vacancies is not fixed but evolves together
with the spins.

e Quenched: the position of the vacancies is fixed (physically, this is
the case if the diffusion time of the vacancies is much larger than the
observation time).

The annealed case is relevant for magnetic fluids, while the quenched case is
relevant for dilute (anti)ferromagnets.

In mathematical terms:

Annealed average: we average the partition function over disorder:
Z=Y Plp)Yy e, F=—kgTlnZ.
{pi} {oi}

Quenched average: we average the free energy over disorder:

ZEp}) =Y e, F({p}) = —ksTIm Z({p}),
{oi}
F=Y"P(p)F({p:})-
{pi}



The critical behavior of annealed systems is not very much different from that
of pure systems. A model describing an Ising system with annealed dilution in
the grand-canonical ensemble for the vacancies is the spin-1 (Blume-Emery-
Griffiths) Ising model.

From now on we shall focus on quenched systems.

The random-bond Ising model:
H = —Z JijUiO'j, J,‘j = ].,0 .
(ig)
This is a model with a random hopping term, satisfying:
N_Jp Jij =1;
P(Jm) B { 1 — P Jz'j = O.

The random-site and the random-bond models are particular instancies of
more general models. For instance, we expect the same critical behavior if
we consider a random-site model in which the probability P(p) has a finite
support on the positive real axis,

P(p) =0for p < 0andp > pmax,
and is otherwise arbitrary.

The condition that P(p) vanishes for negative p guarantees a ferromagnetic
low-temperature ground state (But it is not a necessary condition, we
will see it later).

The condition P(p) = 0 for p > ppax can be replaced by the requirement
that P(p) — 0 for p — +oo sufficiently fast.

10



In the random-site and in the random-bond models the probabilities of the
vacancies on different sites (or different bonds) are uncorrelated. This is
not a necessary condition. Short-range correlations are allowed.

An example is the random-anisotropy model with cubic symmetry, which
is a random-bond Ising model with

J,‘j =n;- le

and 71; are random vectors defined on sites that can take the values: (£1,0,0),
(0,%1,0), (0,0, +£1).

Clearly, J;; and J;;, (same 1) are correlated, since they are obtained by using
the same vector ;.

Mathematically, correlations can be characterized in terms of Wilson-loop
averages.
Consider a square loop of size L x L. Then,

W(L) = [H J,-J] =31

where:

the product is over the links belonging to the loop;

the symbol [-] denotes the average over the J;; distribution.

Note that W(L) — 0 exponentially for . — co: correlations are short-
ranged.

One can show that the the random-anisotropy model with cubic symme-
try has a ferromagnetic low-temperature phase and that the transition is in
the same universality class as that of the randomly dilute Ising model.

11



Back to the Harris criterion

We wish to understand the Harris criterion.
Let us consider the randomly dilute Ising model with a very small amount
of dilution, i.e. for 1 — p <« 1. Let us rewrite the Hamiltonian as

H =" pipjoio; = Hyue + ) (1~ pipj)oio;.
(i) (i7)
Let us now expand the partition function:
2

_ _ 1
(& BH _ e BHpure 1-— 62(1 — pl'pj)O'iO'j + §ﬁ2 Z(l - pipj)dicrj + ...
(4) (4)

Since [p;] = p, if ¢ = 1 — p?, we have for ¢ < 1:

F Fpure Bq
—=—=——+4gF—-—C

% v +q E+.
where:

E = (0;0;) is the energy in the pure model;
Cg is the specific heat in the pure model.

This expansion gives the free energy of the dilute model in terms of energy
correlations in the pure model.

It explains why we shall often refer to dilution as randomness coupled to
the energy.

It explains the Harris criterion. Indeed:

1. If corrections diverge we expect the critical behav1or to be different from
that of the pure model. If they vanish the critical behavior should be the
same as that of the pure model.

2. If a >0, Cg — oo. Thus, o > 0 implies that random dilution changes
the universality class.

3. If @ < 0, corrections are finite. One can show that their only effect is
a critical-temperature shift and different scaling corrections; however, the
leading behavior is unchanged.

12



Phase diagram of dilute systems

The phase diagram of dilute systems has the following generic shape:

paramagnetic

Griffiths

e In the low-temperature phase there is a ferromagnetic phase for p >

pure system Pperc

Pperc, Where Dper is the percolation threshold of the spins.

The absence of a
vacancies) is easy

magnetism.

e For T = T,(p), 1
with decreasing p.

to align decreases

o If T, = T,(p = 1) is the critical temperature in the pure model, for

ferromagnetic phase for p < pperc (large number of
to understand: in this regime spin clusters do not
percolate and form finite islands. Thus, there is no possibility for ferro-

> P > Pperc; there is a paramagnetic-ferromagnetic
transition line. Note that the critical temperature T' = T.(p) decreases
It is easy to understand its origin. Due to the vacan-
cies the effective number of neighbors decreases and thus the tendency

(think at the usual mean-field calculations).

T > T, there is a standard paramagnetic phase.

e The intermediate region

{

Tc(p) <T< Tp for p > Pperc »
O<T<Tp fOI'p<pperc7

13



is called Griffiths phase. From the point of view of magnetic order, the
Griffiths phase is paramagnetic. However, there are also some unusual
features.

NOTE: There is at present no indication that the percolation threshold of
the vacancies plays any role. Numerical works indicate that the critical
transition and the phases do not depend on the geometric structure of the
vacancies: it is not relevant if the vacancies percolate or not.

14



Properties of the Griffiths phase

This is an unusual phase that characterizes all random systems.
It is due to the fact that there are samples in which large space regions do
not present vacancies (Griffiths islands) and which magnetize for 7' < T,

4 x 4 Griffiths 1sland

The probability of a Griffiths island is exponentially small in the volume.
Still, it has effects on the static and (more importantly) on the dynamic
behavior.

15



STATIC BEHAVIOR: The free energy is not analytic in the Griffiths
phase (theorem for Ising systems, believed to hold for XY and Heisenberg
systems).

For instance, consider the free energy as a function of the magnetic field A.
The free energy is not analytic for A = 0. This singularities are however quite
weak. Indeed, the free energy is infinitely differentiable. Thus, it might be a
singularity of the type

F(B, h) = Fanalytic(ﬁ; h) + exp(—a(ﬁ)/h), a(ﬂ) > 0.
DYNAMIC BEHAVIOR: Griffiths islands are instead crucial for the dy-
namics (Bray, 1988).

The setting: consider a randomly dilute model and a local dynamics without
conservation laws. This is the appropriate dynamics for Ising antiferromag-
nets.

Result: disorder-averaged autocorrelation functions DO NOT decay expo-
nentially, as is expected in a paramagnetic phase.

16



Derivation of the asymptotic behavior for Ising systems

Let us consider the disorder-averaged spin-spin autocorrelation function:

c) = [o@=0,t = 0)o(z = 0,1))]

= P({Pz})(0($ =0,t= O)U(x = Oat»{m}‘
{pi}

For a reversible dynamics, the autocorrelation function is positive.
We can obtain a lower bound on C(t) by considering only a particular set of
samples: those that have a Griffiths island L% centered in z = 0.

no vacancies in
the shaded region:
Griffiths island
of size L

C(t) > Y P(L){o(z = 0,t = 0)a(z = 0,1))z
Now:

e P(L) is the probability of a block of size L centered in 0 with no vacan-
cies. Since there are no site-site correlations, we have

P(L) = e L, a=—Inp

P(L) decays exponentially as L — 0o, as expected.

e the dynamics is controlled (at least for large L) by the dynamics within
the block. Since the block is magnetized (we are considering T' < T})
we have (Ising systems)

(o(x = 0,t = 0)o(z = 0,t)) ~ exp(—t/7(L)), T = exp(c L.

17



e Putting the terms together we obtain

C(t) > Z exp[—alL® — texp(—oL*Y)).
L

We can evaluate the dominant term for ¢ — oo, by computing the
stationary point with respect to L.

If
f(L) = —al® — texp(—oL?™),
then
% =0, = L~ (Int)V/ED
so that
C(t) > exp[—A(Int)¥(@-1)] (d=3) C(t) > exp[—A(Int)*?

CONCLUSION: C(t) does not decay exponentially.

NOTE: C(t) decays faster than any power law.
Thus: the dynamics is slower than in a standard paramagnetic phase, but it
is faster than that at a continuous phase transition.

18



Field theory

In mean-field theory the Ising behavior can be understood in terms of the
Landau-Ginzburg Hamiltonian. Let ® be the magnetization. Then we
rewrite

7 — Ze—-ﬁH Ehgl_ZZ(S(@__ZUz) —BH|[o]-Y, ho;

{0} {o} @
— Z o~ Vhe—VH(?)
)

where

e VHLa(®) Zé (Cb - = Zm) e~PHl]

{o}

The basic assumption of the Landau-Ginzburg theory is that Hrq(®) is well
behaved so that one can expand it in powers of ®:

Hio(®) = Hy + A(T)®* + B(T)®* +

For V — oo only the value of ® that minimizes Hy¢(®) matters. A textbook
calculation indicates that the minimum is obtained for

[0 if A(T) >0
‘D_{@wﬁo it A(T) < 0

Here we assume B(T) > 0. If B(T) is negative, we should also consider the
@5 term, obtaining a more complex behavior (tricritical points...)
The critical temperature T, is defined by A(T:) = 0.

The mean-field description misses a very important point:
FLUCTUATIONS: the local magnetization fluctuates wildly on the scale
of the correlation length.

The correct critical behavior is only obtained by taking fluctuations into
accont.

19



How to introduce fluctuations in the LG theory:
1. replace the global magnetization ® with a local magnetization ¢(z).
2. introduce a fluctuation term

D (2) = 1>

U
Thus, the correct theory is given by

1 T A
H= /dx !5 ;(5@)2 + 5452 + Z(#J

~ [l

Note that the theory is defined in terms of a functional integral. Such an
integral is not well defined mathematically and one needs a regularization.

A conceptually simple regularization is the lattice regularization.
We consider, e.g., a cubic lattice and replace

(0u9)" = (3 + 1) = $(2))* = Pz + ) + §(x)* — 20(c + p)¢(=)

Thus, we can replace
33 20,0 - 33 6(@)? - 3 6(e)o)
ToH e (zy)

The Hamiltonian becomes

H=—3"0@o) + S Vg, V()= 2+ 68+ 2o

This Hamiltonian is an Ising Hamiltonian for “soft” spins. The Ising Hamil-
tonian is obtained in the limit

A — +00, r— —0Q, TX—>—§.
Indeed, in this limit
A
V(g) = @(¢2 - B)°

so that e=(®) vanishes for A — oo unless ¢ = . If we set ¢ = /Bo, 0 = +1
we reobtain the Ising Hamiltonian.

20



Perturbation theory

In perturbation theory we expand in powers of A for A small. More precisely,
perturbation theory is organized in powers of A = X\t~4~9/2 where t = r —
r.(u) and r.(u) is fixed by the condition that the correlation length vanishes
for t = 0.

To understand this point, let us start from the LGW Hamiltonian

1 r A

Then, let us perform a change of variables. We consider a new field #(s)
defined by

Y(s) = A%p(sN).

Then, we fix @ and § so that H[1] can be written in the form:
d. {7 Loamz T2 14
Hly] = [ d% |Hy +5(09)"+ 54" + 797,

NOTE: the coefficients of (91) and of 1)* are 1. This requirement gives two
equations that allow us to obtain the exponents o and 3:

a=(d-2)/[2(d—4)] p=-1/(4—d).
The coefficients H and 7 are given by

= pa-(ar)/e-a) 5= py-2-d)

Thus, formally, once the Hamiltonian is expressed in terms of 1, the bare
parameters appear only in the combinations H and 7.

Since the free energy is invariant under field redefinitions, it depends only on
H and .

21



This derivation assumes scale invariance, which is not satisfied by the regu-
larized theory. If one takes into account the breaking of scale invariance, one
must make only one change:

replace r with ¢ = r — r.()\), where ¢ vanishes at the critical transition and
r.(A) is a non-pertubative function.

The necessity of this renormalization is easy to understand. It expresses the
fact that the critical behavior is not obtained for 7 = 0 as in the mean-field
model or for A = 0. For any given A one should determine the critical value

Te(A).

Perturbation theory in terms of A = 2\/ t(4=4)/2 ig not convenient: the critical
limit is obtained for ¢ — 0, hence A — oo. Thus, we should obtain the
large-\ from the small-\ behavior.

22



Renormalized perturbation theory

The trick consists in expressing the perturbative series in terms of a
renormalization-group invariant quantity. In perturbation theory one usu-
ally considers the four-point renormalized coupling g, but conceptually
any renormalization-group invariant quantity could be used.

Define:

e Correlation length:

¢ _ L, P (00)6(a)
24, (3(0)9())

This definition does not depend on the normalization of the fields and
has the correct length dimensions. This is the standard definition of the
second-moment correlation length used in numerical calculations.

s Coupling g¢:
Dy, (0(0)p(2)p(y) p(2)) ™
€Y, {9(0)4 ()]

The coupling ¢ is RG invariant since:

1. it is invariant under field rescalings: the same number of fields appears
in the numerator and in the denominator;

2. it is invariant under length rescalings:

numerator ~ / dxdydz ~ (length)gd

denominator ~ £%( / dz)? ~ (length)3¢

Now we have
g = 5\+a25\2+a3/~\3—|—...

We then invert this expansion to obtain ) as a function of ¢ and express all
quantities in terms of g.

To obtain critical results perturbative series should be computed at g = g%,
where ¢g* is the value of g at the critical point.
How do we determine g* in perturbation theory?

23



G function and fixed points
On the lattice g and £ are functions of the temperature 3:
9=49(8), §=¢(0)
Of course we can also use { as independent variable and consider g(¢),
given £ — f by inverting & = £(8) — g(§) = g(8);
or use g as independent variable and consider £(g).

The S-function is defined as

d
Blg) = ~€g¢

and is always thought as a function of g.
Properties of B(g) close to the critical point
For 8 — (3., g and & behave as
9= +a(f— B>+
§=b(B=F)7" [L+c(Be = B)" + -]

A is a correction-to-scaling exponent which is universal and depends only on
the universality class.

Explicitly, keeping only the leading term

dg dg/df  —Aa(B.— B> Aa
de ~ defdB  vb(B.—B)L  wb

Thus, we obtain

(/Bc - ﬁ)A+y'

__Aa mA
—“V_(ﬁc ﬁ)

Finally, we must express it in terms of g:

B

1A
9= +alt- 8 = b 5= (12L)

24



This gives finally

B(g) =w(g—g")+ ..., w="=

The 3 function satisfies the following properties:
1. It vanishes at the critical point (we say that g = g* is a fixed point).
2. Tt satisfies (STABLE fixed point):

dB

— >0
dg 9=9*

To understand the origin of this terminology, set & = €”. The critical point
is reached for 7 — oo (in some sense 7 is a “time”).

From the definition of the 8 function we have

dg
-2 — _RB
ir (9)

This equation is usually called flow equation, since it controls how g varies
with the time 7. Now note:

1. if g = ¢* at 7 = 0, we have g = g* for all 7 > 0; this is why g¢* is called a
fixed point;
2. if we start close to the fixed point

g(1) = g" + Ae™",

where A depends on starting value. Since w > 0, for any starting condition
g(1) — g*. Thus, ¢* is a stable fixed point.
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The strategy in field theory

1. Compute the perturbative expansion of g and £ (and of any quantity of
interest) in powers of A.

2. Invert the previous relation to compute A in powers of g. All quantities
of interest are expressed in terms of g.

3. Compute the g function and determine its zeros. Select the stable fixed
point g*.

4. Compute all quantities at g = g*.

A technical problem: perturbative expansions in field theory are not con-
vergent. Still they are Borel summable and this allows us to obtain finite
results.

For pure models field theory gives results that have been competitive with
numerical ones for a long time.
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Field theory for random dilute Ising models

For the pure model, field theory (FT) is based on the Hamiltonian
1 r A
H= [ [5 > (0u9) + 56" + 56
7

How do we introduce randomness?

We know that in randomly dilute models, randomness is coupled to the
energy.

Which is the correct coupling in FT?

The argument:

In the Ising model the energy is E; = 0,044

In the FT model we may consider E; = ¢z0z1p-

Note, however, that the relevant length scale is the correlation length; thus,
operators that differ on the scale of a single lattice spacing behave analogously
(unless constraints are present).

Thus, we can take F, = ¢2.

For instance, in the lattice ¢*

<¢2(0)¢(x)2>conn ~ t—a’
as expected for the specifi heat.

In order to introduce randomness we consider a space-dependent function
¥(x) and add a term

[ devie)otay

to the Hamiltonian, assuming where 1(z) to be normally distributed

P(¢)) ~ exp(—By?).

The Hamiltonian is therefore

B 1 T+ Y(x) A
H = /d.’l? |:§ %:(8ﬂ¢>2 + —2“—¢2 + Zi¢4 y
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Then, we define

2] = [lagle®

and

6F =~ [1a61PW)m 21y
NOTE: Since we are considering quenched averages, we must average
In Z[¢].

As it stands, perturbation theory is impossible. The way out is the
REPLICA TRICK.

For n — 0 (n real) we have

1
" ="~ 14 nlng = lnxzﬁ(x"—l).

Thus, we rewrite

n—0

pF = ~lim > [lalPw)(2yl" - .

In practice, we should compute

6(r) = [ 01P) 2l
for REAL n and then take the limit n — 0.

We shall compute G(n) only for INTEGER values of n and then extrapolate
to n — 0. This is a dangerous procedure. In the spin-glass mean-field case
this is incorrect (Parisi solution); in the randomly dilute models there is no
evidence that this procedure fails.
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The quantity Z(1))" can be rewritten as follows. Consider an n-dimensional
field ¢,, a =1,...,n and define

1
H, = /dfﬂ Z [5 M¢a)2 (7" ‘Hp)ﬁbz + @2}
a b
Different components do not interact and therefore

2 = [lagle ™

In order to compute G(n) we should average over disorder:

Glnl = /d¢]eXp [/d”UZ( D _(Bue) +§¢2+%¢3)]

N e

The integral over the noise is a Gaussian integral that can be easily performed
by a shift. Since:

2
1 1
—-éw(; 82) — By’ = —B (w + ZB;(’%) 165(2 $2)’

the integral over 9 gives

constant X exp [ / dx1_6—ﬁ_ Z¢2 }

This term couples the different components (rephcas) and can be added to
the Hamiltonian obtaining:

Gl = /dasexp{/dwz( S @b+ L2+ ) 4,2%},

where we set p/4! = —1/(1603).

Perturbation theory for the theory with replicas is standard and is derived
from this Hamiltonian.

NOTE: there are two quartic couplings and this makes the treatment
(slightly) more complex.
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Strategy of the calculation

1. Compute the quantities of interest in terms of A= MWD2 g =
,U;t_(4_d)/2-

2. Consider two renormalized couplings g; and go that behave as X and i at
lowest order. The natural candidates are associated with the two independent
4-point correlation functions:

(6°(0)¢" ()" (y)9"(2))
(¢°(0)¢"(2) 8" (v)¢"(2)) ab

3. Compute the corresponding TWO 3 functions and determine the fixed
points. To determine their stability consider the Jacobian matrix

a(Bh B2)
a(gla 92) .

A fixed point is stable if the eigenvalues of J are positive.

J =
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Results

An analysis of the perturbative expansions shows:

1. The Ising fixed point (g5, g» = 0) is UNSTABLE.

2. There is a new fixed point (g7, g5) which is STABLE.

3. This fixed point should be associated with the critical behavior in the
presence of dilution.

Perturbative theory provides relatively precise estimates of the critical expo-
nents that compare well with the numerical estimates.

Method 5 v 7 w
(2000) d =3 exp. O(¢%) 1.330(17) 0.678(10) 0.030(3) 0.25(10)
(2000) d=3exp. O(¢°) 1.325(3) 0.671(5) 0.025(10) 0.32(6)
(1999) d=3MS O(g*) 1.318 0.675 0.049 0.39(4)
(2007) MC 1.341(5) 0.683(2) 0.036(1) 0.29(2)

NOTE: w which is the correction-to-scaling exponent is particularly SMALL
(in pure systems w ~ 0.8).
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Field theory for XY and Heisenberg dilute systems

The whole treatment can be extended to XY and Heisenberg dilute systems.

In the pure system the basic variable is a vector field ¢, with & = 1,2 or
a=1,23.

In the random case we should add a replica index. The basic field is Daces
a=1,...,n.

The derivation of the Hamiltonian is the same.

RESULTS:
1. The pure fixed point (g7, go = 0) is STABLE.
2. There is a new fixed point (g7, g3), but it is UNSTABLE.

These results confirm the conclusions obtained by using the Harris criterion.
Field theory also predicts scaling corrections proportional to
|ﬁ - ﬁc!—a-

In the XY and Heisenberg case « is very small:
XY systems: a = —0.015;
Heisenberg systems: o = —0.13.

The asymptotic behavior is difficult to observe with good precision.
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NUMERICAL WORKS: SOME COMMENTS

Field theory identifies a single universality class for randomly dilute systems
and thus it predicts that the critical behavior is independent of the dilution.

Can we verify this statement numerically?
An UNBIASED test is VERY DIFFICULT.

Field theory predicts the leading and the next-to-leading correction-to-scaling
exponents: w =~ 0.3, ws =~ 0.8. They are very small and thus many correction-
to-scaling terms must be taken into account. For instance, for the suscepti-
bility at the critical point we should consider a fit like

X(L) = aL?> (1 + by L™ + by L™ + by L ™5 4 by L72)

In the pure model, incorrect results are obtained if we do not include the
leading term L~%8, which is of the same order of L™ and L%

Of course, such a fit cannot be performed with the lattice sizes available
today.

What can be done is a consistency check:

1. Assume that FT is correct and determine convenient models that mini-
mize corrections. In practice we change the dilution parameter p until the
scaling corrections decay as L2 ~ L™98, We call these models improved
models.

2. For these models we compute numerically critical exponents and other
universal quantities.

3. We consider several improved models and verify that the estimates ob-
tained for the different models agree within errors.

4. Then, we consider generic values of the dilution parameter and verify that
the observed behavior is consistent with a single universality class.
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We have applied this strategy to the random-bond and to the random-site
Ising model.

We have determined the improved Hamiltonian:
The random-site model is improved for p = 0.80;
The random-bond model is improved for p = 0.54.

NOTE: For p = 0.80 site vacancies do not percolate; for p = 0.54 bond
vacancies percolate. The equality of the critical behavior indicates that the
geometric structure of the vacancies is irrelevant.

RESULTS:

v = 0.683(2)
n = 0.036(1)
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+J Ising model

In the random-bond Ising model, J;; assumes the values 0,1. A related model
is the Edwards-Anderson model in which Ji; assumes the values —1, 1:

H= —ZJijUina J,'j = 1, —-1.
(i7)

N _Jp Jij=1;
P(JU) o {1 —p Jij = —1.

This models describes the critical behavior of systems with ferromagnetic-
antiferromagnetic couplings.

The phase diagram is the following:

172

We only report the magnetic transitions. We have not indicated the Griffiths
phase, which is present for T" < Tis.

For a small amount of antiferromagnetic bonds, the system shows a para-
ferro transition. This transition is in the same universality class of that of
randomly dilute models, even though the Hamiltonian is not ferromagnetic
(frustration is irrelevant).

For a larger amount of antiferromagnetic bonds there is a glassy phase and a
paramagnetic-glassy transition. The nature of the transition does not depend
on p and thus the critical behavior is the same as that of the bimodal spin-
glass Ising model with p = 1/2.
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cRIMCcAL BEHAVIOR

In 'H’E., .‘Shndaro( Is"-;3 me o el the su:?(-u"qr‘
':H:lr"t of the .JG-ee, erergy can be coritHen an

dv ~Yn /s _
'F.smg (Eh) = 4 Jf( Un Wy yt) t Scal. covrechons
W, Ug NON ~ LINERR  SCALING FlelbDs

Adp, = h (.4+ qt +az£l+-.. 4 b,hl-i )
U = t (._f_; clf_-,'-tCat{*... *O’{‘l!* core )
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Bias correction in simulations of disordered systems

Let us consider (for instance) the random-site Ising model and let us set
w(o;p) = e /2.

We wish to compute averages of functions A(o, p) that depend on the spins
and on the dilution variables, for instance

n = "—Zp [Z a;p)A(0, p)

n

A possible numerical strategy:

e Extract N, independent disorder configurations p,, @ = 1,..., N,, with
probability p(p) and then, for each p,, extract N, independent configu-
rations 0,4, @ = 1,. .., Ny, with probability 7(c; pa).

This is exactly the procedure used in MC simulations.
N, is the number of samples, N,, the number of measures per sample.

e Then, define the sample average

1 m
A]pa _Z Ua o pa (1)

e A possible estimator of O,, could be

N,

Y

1

est —
O, = N

a=1

QUESTION: does O%* converge to O, as Ny — oo at FIXED N,,.
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One can show that, for N, — oo at fixed N, we have
O — ([A]").

This is intuitive. The quantity we are really computing is the sample mean
[A]; thus, by taking the limit N, — co we average over the disorder distribu-
tion.

Now let us compute ([A]") for a given disorder distribution.

Casen = 1:

1 [
= N_m <ZA(0'G,)0)> = <A>pa

O$ converges to O, irrespective of Ny,: one could even take N,, = 1.
Case n = 2:

(4] = —1_72” <ZZA(oa,p)A (o0, P)>

a=1 b=

— —]—VIZ [Nm(Nm —1)(4); + N <A2>p]

2y ng ((42), - @2).

O3 DOES NOT converge to O,. The second term is what we called the
BIAS.
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Strategies to deal with the bias

(Naive approach) One possible approach consists in taking N, large. This
is not a good choice in high-precision studies.

(Parisi et al. approach) If O%* is an estimator of O, which, for Ny — oo at
fixed N, converges to

O+ +—+O(1/N2).

m

consider
1 1
Qestunb _ gjest —2—(9§“7"21 - 5(9?7“22

Here O%* is determined by using all N,, measures, while O‘l"% , and (9‘155/t22
are computed by using the first half and the second half of the measures.

Indeed:

2a
20° — 20 + —
— 20+
1—- 1 a 1— a
Oest - :—O o
/217 204'2N@m 2" TN,
1—
©_—0+—

- Oest O -
91227 +2MM2 2" ' Np

Summing up, we check that 1/N,, corrections vanish.

The advantage of this method is its generality; moreover it can be improved
systematically.

(our approach) For products of thermal averages one can define estimators
with no bias.
Divide the N,, configurations in n bunches and define the sample average
over bunch i of length N,,/n:
n iNp/n
[Al1/n,ip0 = N Z A(0aa; Pa)- (3)
™ a=1+(i—1)Npn/n
A new estimator of O, is
N,

@«

1
= ]_V’_ l/n 1aPa 1/”1,2,Pa t [A]l/n,n,pa- (4)

s a:l

unbiased
On
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If correlations are present, it is easy to generalize these results: to compute
(A)?, we use

N, Nm/2—k

_kaz Z A‘“ Z AJ

Jj=Npm/2+k

with k of the order of a few autocorrelation times.

Is it really necessary to take into account the bias correction?

360 —
miss 8 ¢ ] i
s,
3551~ L _
§
]
RE’ 350 _
: , —1359
} i {358
345 { —357 i i
. 1. 1 . 1 ], * withbias corr.
[0 00002 00004 00006 = without bias corr. ]
IN
L 1 S ) 1 : ! . 1 L
3405 0.005 0.01 0015 0.02 0.025 0.03

1/N
m

R’€ for a run of the RSIM model at L = 64, p = 0.8, Ny, = 60000, Brun =
0.285742, reweighted at R¢ = 0.5943 as a function of 1/N,,. In the insets

we show the results for the bias-corrected estimates versus 1/N2%. We report
data with N, = 40,80, 120, ..., 400.
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