
Exact Optimization in Spin-Glass Physics

Frauke Liers

Department of Computer Science, University of Cologne

Spring School Leipzig 2008

Outline

1 Spin Glasses

2 Complexity Theory in a Nutshell

3 Branch-and-Bound

4 Branch-and-Cut for Ising Spin Glasses

5 Branch-and-Cut for Potts Spin Glasses

Outline

1 Spin Glasses

2 Complexity Theory in a Nutshell

3 Branch-and-Bound

4 Branch-and-Cut for Ising Spin Glasses

5 Branch-and-Cut for Potts Spin Glasses

Outline

1 Spin Glasses

2 Complexity Theory in a Nutshell

3 Branch-and-Bound

4 Branch-and-Cut for Ising Spin Glasses

5 Branch-and-Cut for Potts Spin Glasses

Outline

1 Spin Glasses

2 Complexity Theory in a Nutshell

3 Branch-and-Bound

4 Branch-and-Cut for Ising Spin Glasses

5 Branch-and-Cut for Potts Spin Glasses

Outline

1 Spin Glasses

2 Complexity Theory in a Nutshell

3 Branch-and-Bound

4 Branch-and-Cut for Ising Spin Glasses

5 Branch-and-Cut for Potts Spin Glasses

Spin Glasses

e.g. Rb2Cu1−xCoxF4

experiments (Cannella & Mydosh 1972) reveal:
at low temperatures: → phase transition spin glass state
Edwards Anderson Model (1975)

• short-range model

• interactions randomly chosen
• Jij ∈ {+1,−1} or
• Gaussian distributed

• H(S) = −
∑

<i ,j> JijSiSj , with
spin variables Si

Jij

ground state: min{H(S) | S is spin configuration}

Spin Glasses

e.g. Rb2Cu1−xCoxF4

experiments (Cannella & Mydosh 1972) reveal:
at low temperatures: → phase transition spin glass state
Edwards Anderson Model (1975)

• short-range model

• interactions randomly chosen
• Jij ∈ {+1,−1} or
• Gaussian distributed

• H(S) = −
∑

<i ,j> JijSiSj , with
spin variables Si

Jij

ground state: min{H(S) | S is spin configuration}

Why Exact Ground States?

in contrast to Monte-Carlo Simulations or genetic algorithms:
we want to compute exact solutions
disadvantages of heuristic methods:

• might become stuck in local minima and do not know
anything about the quality of the solution → physical
analysis might be biased.

• configurations with almost the same energy might be very
different → not clear whether results of spin-spin
correlation functions can yield relevant information.

Why Exact Ground States?

in contrast to Monte-Carlo Simulations or genetic algorithms:
we want to compute exact solutions
disadvantages of heuristic methods:

• might become stuck in local minima and do not know
anything about the quality of the solution → physical
analysis might be biased.

• configurations with almost the same energy might be very
different → not clear whether results of spin-spin
correlation functions can yield relevant information.

Why Exact Ground States?

in contrast to Monte-Carlo Simulations or genetic algorithms:
we want to compute exact solutions
disadvantages of heuristic methods:

• might become stuck in local minima and do not know
anything about the quality of the solution → physical
analysis might be biased.

• configurations with almost the same energy might be very
different → not clear whether results of spin-spin
correlation functions can yield relevant information.

Cologne Spin-Glass Ground-State
Server

• An exact ground state can be computed via our server on
the web
www.informatik.uni-koeln.de

• submit jobs via a command-line client (or via
www-interface) and get exact results via email. (will be
extended in the future.)

• current focus: compute exact results for hard instances of
the problem.

• 2d spin glasses
• 3d spin glasses
• SK spin glasses

Cologne Spin-Glass Ground-State
Server

• An exact ground state can be computed via our server on
the web
www.informatik.uni-koeln.de

• submit jobs via a command-line client (or via
www-interface) and get exact results via email. (will be
extended in the future.)

• current focus: compute exact results for hard instances of
the problem.

• 2d spin glasses
• 3d spin glasses
• SK spin glasses

‘This is a Hard Problem’ means...

• NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

• e.g., 2d Ising spin glasses with an external field or 3d
lattices

• whereas 2d , no field, free boundaries: ‘easy’

more details later.

‘This is a Hard Problem’ means...

• NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

• e.g., 2d Ising spin glasses with an external field or 3d
lattices

• whereas 2d , no field, free boundaries: ‘easy’

more details later.

‘This is a Hard Problem’ means...

• NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

• e.g., 2d Ising spin glasses with an external field or 3d
lattices

• whereas 2d , no field, free boundaries: ‘easy’

more details later.

‘This is a Hard Problem’ means...

• NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

• e.g., 2d Ising spin glasses with an external field or 3d
lattices

• whereas 2d , no field, free boundaries: ‘easy’

more details later.

Outline

1 Spin Glasses

2 Complexity Theory in a Nutshell

3 Branch-and-Bound

4 Branch-and-Cut for Ising Spin Glasses

5 Branch-and-Cut for Potts Spin Glasses

General Concepts
many problems can be formulated on graphs G = (V , E) with
node set V and edge set E .
Edge weights ce ∈ R might be present.
Examples (from ABC 2’s TSPbook):

Figure 1.3 The Commis-Voyageur tour in Germany.

General Concepts
many problems can be formulated on graphs G = (V , E) with
node set V and edge set E .
Edge weights ce ∈ R might be present.
Examples (from ABC 2’s TSPbook):

Figure 1.3 The Commis-Voyageur tour in Germany.

General Concepts
many problems can be formulated on graphs G = (V , E) with
node set V and edge set E .
Edge weights ce ∈ R might be present.
Examples (from ABC 2’s TSPbook):

tspbook April 17, 2006

30 CHAPTER 1

Figure 1.30 Continuous-line drawings via the TSP. Images courtesy of Robert Bosch and
Craig Kaplan.

Figure 1.31 Portion of a million-city tour.

research, providing a common testbed for both new and old solution approaches.
Random Euclidean problems, with the locations of the cities selected at ran-

dom from a square, form an alternative class of geometric test instances. The ease
with which such examples can be created made them a common target in compu-
tational studies, particularly before the availability of the TSPLIB. More recently,
the search for computational evidence for the value of the Beardwood, Halton, and
Hammersley [43] TSP constant has driven the interest in this class of problems.
Using Lethbridge’s style, a portion of a tour through one million uniformly dis-

General Concepts
many problems can be formulated on graphs G = (V , E) with
node set V and edge set E .
Edge weights ce ∈ R might be present.
Examples (from ABC 2’s TSPbook):

usa13509

pla33810

d15112

sw24978

Figure 1.47 Optimal tours.

General Concepts

many problems can be formulated on graphs G = (V , E) with
node set V and edge set E .
Edge weights ce ∈ R might be present.
Examples:

• shortest paths in networks

• shortest traveling salesman tour (TSP)

• etc.

Some of them are ‘easy’, some ‘hard’.
...in more detail:

Complexity of Decision Problems

A problem P is a decision problem, if the set of all instances
IP of P is partitioned into the ‘yes’ and the ‘no’-instances. For
each instance we ask: Is it a ‘yes’- or a ‘no’-instance?

Complexity of Decision Problems

A problem P is a decision problem, if the set of all instances
IP of P is partitioned into the ‘yes’ and the ‘no’-instances. For
each instance we ask: Is it a ‘yes’- or a ‘no’-instance?

Complexity of Decision Problems

Example

1 instance: n ∈ N
question: Is n a prime number?

2 instance: graph G = (V , E)
question: Is G connected?

A decision problem is solved by an algorithm A, if A for each
instance terminates and gives the correct ‘yes’ or ‘no’ answer.

Complexity of Decision Problems

Example

1 instance: n ∈ N
question: Is n a prime number?

2 instance: graph G = (V , E)
question: Is G connected?

A decision problem is solved by an algorithm A, if A for each
instance terminates and gives the correct ‘yes’ or ‘no’ answer.

Complexity of Decision Problems

Example

1 instance: n ∈ N
question: Is n a prime number?

2 instance: graph G = (V , E)
question: Is G connected?

A decision problem is solved by an algorithm A, if A for each
instance terminates and gives the correct ‘yes’ or ‘no’ answer.

Complexity Class P

Contains all decision problems P for which there exists a
solution algorithm that solves P within a time polynomially
bounded in the size needed to store the input, i.e., number of
bits.
polynomially bounded?

• assume: each elementary algorithmic step (summation,
assignment, etc.) has cost 1.

• Let input for some problem be stored by m bits. (e.g., for
n ∈ N , m = log n bits are needed.)

• A decision problem is in P, if the number of steps in the
solution algorithm asymptotically only grows as fast as
mk , with k ∈ N .

Complexity Class P

Contains all decision problems P for which there exists a
solution algorithm that solves P within a time polynomially
bounded in the size needed to store the input, i.e., number of
bits.
polynomially bounded?

• assume: each elementary algorithmic step (summation,
assignment, etc.) has cost 1.

• Let input for some problem be stored by m bits. (e.g., for
n ∈ N , m = log n bits are needed.)

• A decision problem is in P, if the number of steps in the
solution algorithm asymptotically only grows as fast as
mk , with k ∈ N .

Example

1 instance: n ∈ N
question: Is n a prime number? Is in P (recent result by
Agrawal et al. from 2002).

2 instance: graph G = (V , E)
question: Is G connected?. Is in P. (breadth-first search)

Example

1 instance: n ∈ N
question: Is n a prime number? Is in P (recent result by
Agrawal et al. from 2002).

2 instance: graph G = (V , E)
question: Is G connected?. Is in P. (breadth-first search)

Complexity Class NP

NP: nondeterministic polynomial
A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no’ answer.
Example:

• for boolean variables x1, . . . , xn: given a clause
x1 ∨ ¬x2 . . . xk ∧ x2 ∨ x4 . . . xl . Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

• given a graph G = (V , E) with edge weights ce , and
k ∈ N . Is there a tour that visits every node exactly once
with length ≤ k? (TSP)

Here, a candidate solution can be verified by insertion.

Complexity Class NP

NP: nondeterministic polynomial
A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no’ answer.
Example:

• for boolean variables x1, . . . , xn: given a clause
x1 ∨ ¬x2 . . . xk ∧ x2 ∨ x4 . . . xl . Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

• given a graph G = (V , E) with edge weights ce , and
k ∈ N . Is there a tour that visits every node exactly once
with length ≤ k? (TSP)

Here, a candidate solution can be verified by insertion.

Complexity Class NP

NP: nondeterministic polynomial
A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no’ answer.
Example:

• for boolean variables x1, . . . , xn: given a clause
x1 ∨ ¬x2 . . . xk ∧ x2 ∨ x4 . . . xl . Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

• given a graph G = (V , E) with edge weights ce , and
k ∈ N . Is there a tour that visits every node exactly once
with length ≤ k? (TSP)

Here, a candidate solution can be verified by insertion.

Complexity Class NP

NP: nondeterministic polynomial
A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no’ answer.
Example:

• for boolean variables x1, . . . , xn: given a clause
x1 ∨ ¬x2 . . . xk ∧ x2 ∨ x4 . . . xl . Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

• given a graph G = (V , E) with edge weights ce , and
k ∈ N . Is there a tour that visits every node exactly once
with length ≤ k? (TSP)

Here, a candidate solution can be verified by insertion.

Complexity Class NP

NP: nondeterministic polynomial
A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no’ answer.
Example:

• for boolean variables x1, . . . , xn: given a clause
x1 ∨ ¬x2 . . . xk ∧ x2 ∨ x4 . . . xl . Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

• given a graph G = (V , E) with edge weights ce , and
k ∈ N . Is there a tour that visits every node exactly once
with length ≤ k? (TSP)

Here, a candidate solution can be verified by insertion.

Complexity Class NP

name NP: alternative classification can be given in which
constructive nondetermininistic algorithms need to have
polynomial running time. In the latter, guessing steps are
allowed.

• obviously: P ⊆ NP.

• core problem in theoretical computer science: P
?
= NP.

Complexity Class NP

name NP: alternative classification can be given in which
constructive nondetermininistic algorithms need to have
polynomial running time. In the latter, guessing steps are
allowed.

• obviously: P ⊆ NP.

• core problem in theoretical computer science: P
?
= NP.

Complexity Class NP

name NP: alternative classification can be given in which
constructive nondetermininistic algorithms need to have
polynomial running time. In the latter, guessing steps are
allowed.

• obviously: P ⊆ NP.

• core problem in theoretical computer science: P
?
= NP.

Complexity Class NP

A problem is NP-complete, if it belongs to the ‘hardest’
problems in NP. Knowing a polynomial-time algorithm for one
NP-complete problem would immediately yield polynomial-time
algorithms for all NP-complete problems.

• SAT was the first problem to be proven to be
NP-complete (Cook (1971))

• For many other problems NP-completeness was proven
since then by reduction to and from other NP-complete
problems

Examples
{0, 1}-integral solution for inequality system (∃01IP)
instance: A ∈ Zm×n, b ∈ Zm

question: Does there exist an x ∈ {0, 1}n with Ax ≥ b?
∃01IP is NP-complete.

Complexity Class NP

A problem is NP-complete, if it belongs to the ‘hardest’
problems in NP. Knowing a polynomial-time algorithm for one
NP-complete problem would immediately yield polynomial-time
algorithms for all NP-complete problems.

• SAT was the first problem to be proven to be
NP-complete (Cook (1971))

• For many other problems NP-completeness was proven
since then by reduction to and from other NP-complete
problems

Examples
{0, 1}-integral solution for inequality system (∃01IP)
instance: A ∈ Zm×n, b ∈ Zm

question: Does there exist an x ∈ {0, 1}n with Ax ≥ b?
∃01IP is NP-complete.

Complexity Class NP

A problem is NP-complete, if it belongs to the ‘hardest’
problems in NP. Knowing a polynomial-time algorithm for one
NP-complete problem would immediately yield polynomial-time
algorithms for all NP-complete problems.

• SAT was the first problem to be proven to be
NP-complete (Cook (1971))

• For many other problems NP-completeness was proven
since then by reduction to and from other NP-complete
problems

Examples
{0, 1}-integral solution for inequality system (∃01IP)
instance: A ∈ Zm×n, b ∈ Zm

question: Does there exist an x ∈ {0, 1}n with Ax ≥ b?
∃01IP is NP-complete.

Optimization Problems

an optimization problem is characterized by

• the set of instances

• information whether we should maximize or minimize

• the set of feasible solutions

• for each instance and each feasible solution, the objective
function value of the solution

Example

MINIMUM TRAVELING SALESMAN (TSP)
instance: set of cities {1, 2, . . . , n}, distance matrix D ∈ Zn×n

+

solution: permutation {i1, i2, . . . , in} of {1, 2, . . . , n} (‘tour’
through all cities)

objective function value:
(
∑n−1

k=1 dik ,ik+1

)

+ din,i1

1

2

3

4

1 2 3 4

0

0

0

0

1

2

5 2 1

6

6

1 2 5

2

1

1 2

3 4

1

2

1

2
5 6

optimal tour 〈1, 2, 4, 3〉, cost 6.
The associated decision problems is NP-complete.

Example

MINIMUM TRAVELING SALESMAN (TSP)
instance: set of cities {1, 2, . . . , n}, distance matrix D ∈ Zn×n

+

solution: permutation {i1, i2, . . . , in} of {1, 2, . . . , n} (‘tour’
through all cities)

objective function value:
(
∑n−1

k=1 dik ,ik+1

)

+ din,i1

1

2

3

4

1 2 3 4

0

0

0

0

1

2

5 2 1

6

6

1 2 5

2

1

1 2

3 4

1

2

1

2
5 6

optimal tour 〈1, 2, 4, 3〉, cost 6.
The associated decision problems is NP-complete.

The Classes NP and NPO
An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

• shortest paths

• minimum spanning trees

• matching

• etc.

An optimization problem is in NPO, if

• the instances can be recognized in polynomial time

• for all instances the size of a feasible solution is
polynomially bounded in the size of the input

• for all y that are polynomially bounded it can be verified
in polynomial time whether y is a feasible solution

• the objective function value can be determined in
polynomial time for each instance and feasible solution

The Classes NP and NPO
An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

• shortest paths

• minimum spanning trees

• matching

• etc.

An optimization problem is in NPO, if

• the instances can be recognized in polynomial time

• for all instances the size of a feasible solution is
polynomially bounded in the size of the input

• for all y that are polynomially bounded it can be verified
in polynomial time whether y is a feasible solution

• the objective function value can be determined in
polynomial time for each instance and feasible solution

The Classes NP and NPO
An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

• shortest paths

• minimum spanning trees

• matching

• etc.

An optimization problem is in NPO, if

• the instances can be recognized in polynomial time

• for all instances the size of a feasible solution is
polynomially bounded in the size of the input

• for all y that are polynomially bounded it can be verified
in polynomial time whether y is a feasible solution

• the objective function value can be determined in
polynomial time for each instance and feasible solution

The Classes NP and NPO
An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

• shortest paths

• minimum spanning trees

• matching

• etc.

An optimization problem is in NPO, if

• the instances can be recognized in polynomial time

• for all instances the size of a feasible solution is
polynomially bounded in the size of the input

• for all y that are polynomially bounded it can be verified
in polynomial time whether y is a feasible solution

• the objective function value can be determined in
polynomial time for each instance and feasible solution

The Classes NP and NPO
An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

• shortest paths

• minimum spanning trees

• matching

• etc.

An optimization problem is in NPO, if

• the instances can be recognized in polynomial time

• for all instances the size of a feasible solution is
polynomially bounded in the size of the input

• for all y that are polynomially bounded it can be verified
in polynomial time whether y is a feasible solution

• the objective function value can be determined in
polynomial time for each instance and feasible solution

The Classes NP and NPO
An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

• shortest paths

• minimum spanning trees

• matching

• etc.

An optimization problem is in NPO, if

• the instances can be recognized in polynomial time

• for all instances the size of a feasible solution is
polynomially bounded in the size of the input

• for all y that are polynomially bounded it can be verified
in polynomial time whether y is a feasible solution

• the objective function value can be determined in
polynomial time for each instance and feasible solution

If the corresponding decision version is NP-complete, the
optimization version is called NP-hard.
Example:

• TSP

• minimum SAT

• etc.

If the corresponding decision version is NP-complete, the
optimization version is called NP-hard.
Example:

• TSP

• minimum SAT

• etc.

Our Focus

Martin Weigel has already pointed you to several relevant
polynomial optimization problems with applications in physics.

• matching

• flows

• etc.

In the following: we focus on the NP-hard variants.

Our Focus

Martin Weigel has already pointed you to several relevant
polynomial optimization problems with applications in physics.

• matching

• flows

• etc.

In the following: we focus on the NP-hard variants.

Spin Glasses

e.g. Rb2Cu1−xCoxF4

experiments (Cannella & Mydosh 1972) reveal:
at low temperatures: → phase transition spin glass state
Edwards Anderson Model (1975)

• short-range model

• interactions randomly chosen
• Jij ∈ {+1,−1} or
• Gaussian distributed

• H(S) = −
∑

<i ,j> JijSiSj , with
spin variables Si

Jij

ground state: min{H(S) | S is spin configuration}

Spin Glasses

e.g. Rb2Cu1−xCoxF4

experiments (Cannella & Mydosh 1972) reveal:
at low temperatures: → phase transition spin glass state
Edwards Anderson Model (1975)

• short-range model

• interactions randomly chosen
• Jij ∈ {+1,−1} or
• Gaussian distributed

• H(S) = −
∑

<i ,j> JijSiSj , with
spin variables Si

Jij

ground state: min{H(S) | S is spin configuration}

Exact Ground States of Hard
Instances

�
�
�
�

��
��
��
��

��
��
��

��
��
��

Graph G=(V, E)

−

Spinglass

node of G

edge of G

edge weight c

node partition V , V

coupling J

configuration
ij ij

+

Exact Ground States of Hard
Instances

Jij

Si = −1 Si = +1

Exact Ground States of Hard
Instances

Jij

Si = −1 Si = +1

cij

G = (V , E)

H = −
∑

e∈E JijSiSj

Computing Exact Ground States
Jij

Si = −1 Si = +1

cij

H(S) +
∑

(i ,j)∈E

Jij =
∑

(i ,j)∈E

Jij (1 − SiSj)
︸ ︷︷ ︸

=

{

2 , if Si 6= Sj

0 , otherwise

= 2
∑

Si 6=Sj

Jij

Computing Exact Ground States

Jij

H(S) + const

= 2
∑

Si 6=Sj

Jij

cij

cut = {(i , j) ∈ E | (i , j) = }

its weight:
∑

(i ,j)∈cut
cij

Computing Exact Ground States

Jij cij

cut = {(i , j) ∈ E | (i , j) = }

H(S)+const = 2
∑

Si 6=Sj

Jij
weight

∑

(i ,j)∈cut
cij

ground state minH(S)
with cij = −Jij :

maximum cut in G

NP-hard in general

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Complexity Status of Maximum
Cut

• for general instances NP-hard, i.e. we cannot expect to
find an algorithm that solves it in time growing polynomial
in the size of the input

• NP-hard for, e.g., 2d Ising spin glasses with an external
field or 3d lattices. more general: on general graphs or on
almost planar graphs

• 2d , no field, free boundaries: polynomial solvable (see M.
Weigel’s talk)

• Goemans und Williamson found a 0.878-approximation
algorithm, i.e.,. a polynomial algorithm, in which the
computed solution has a value of at least 0.878 times the
value of an optimum cut. However: If P6=NP, there does
not exist a polynomial algorithm that computes a solution
with value at least 98% of the value of an maximum cut.

Complexity Status of Maximum
Cut

• for general instances NP-hard, i.e. we cannot expect to
find an algorithm that solves it in time growing polynomial
in the size of the input

• NP-hard for, e.g., 2d Ising spin glasses with an external
field or 3d lattices. more general: on general graphs or on
almost planar graphs

• 2d , no field, free boundaries: polynomial solvable (see M.
Weigel’s talk)

• Goemans und Williamson found a 0.878-approximation
algorithm, i.e.,. a polynomial algorithm, in which the
computed solution has a value of at least 0.878 times the
value of an optimum cut. However: If P6=NP, there does
not exist a polynomial algorithm that computes a solution
with value at least 98% of the value of an maximum cut.

Complexity Status of Maximum
Cut

• for general instances NP-hard, i.e. we cannot expect to
find an algorithm that solves it in time growing polynomial
in the size of the input

• NP-hard for, e.g., 2d Ising spin glasses with an external
field or 3d lattices. more general: on general graphs or on
almost planar graphs

• 2d , no field, free boundaries: polynomial solvable (see M.
Weigel’s talk)

• Goemans und Williamson found a 0.878-approximation
algorithm, i.e.,. a polynomial algorithm, in which the
computed solution has a value of at least 0.878 times the
value of an optimum cut. However: If P6=NP, there does
not exist a polynomial algorithm that computes a solution
with value at least 98% of the value of an maximum cut.

Complexity Status of Maximum
Cut

• for general instances NP-hard, i.e. we cannot expect to
find an algorithm that solves it in time growing polynomial
in the size of the input

• NP-hard for, e.g., 2d Ising spin glasses with an external
field or 3d lattices. more general: on general graphs or on
almost planar graphs

• 2d , no field, free boundaries: polynomial solvable (see M.
Weigel’s talk)

• Goemans und Williamson found a 0.878-approximation
algorithm, i.e.,. a polynomial algorithm, in which the
computed solution has a value of at least 0.878 times the
value of an optimum cut. However: If P6=NP, there does
not exist a polynomial algorithm that computes a solution
with value at least 98% of the value of an maximum cut.

Applications of Maximum Cut

• quadratic 0-1 optimization: Given A ∈ Rn×n and a ∈ Rn,
compute min{xTAx + aT x | x ∈ {0, 1}n}

• separation can also be used in practice for quadratic
optimization with additional side constraints

• layout of electronic circuits

• scheduling of sports leagues

• etc.

Applications of Maximum Cut

• quadratic 0-1 optimization: Given A ∈ Rn×n and a ∈ Rn,
compute min{xTAx + aT x | x ∈ {0, 1}n}

• separation can also be used in practice for quadratic
optimization with additional side constraints

• layout of electronic circuits

• scheduling of sports leagues

• etc.

Applications of Maximum Cut

• quadratic 0-1 optimization: Given A ∈ Rn×n and a ∈ Rn,
compute min{xTAx + aT x | x ∈ {0, 1}n}

• separation can also be used in practice for quadratic
optimization with additional side constraints

• layout of electronic circuits

• scheduling of sports leagues

• etc.

Applications of Maximum Cut

• quadratic 0-1 optimization: Given A ∈ Rn×n and a ∈ Rn,
compute min{xTAx + aT x | x ∈ {0, 1}n}

• separation can also be used in practice for quadratic
optimization with additional side constraints

• layout of electronic circuits

• scheduling of sports leagues

• etc.

Outline

1 Spin Glasses

2 Complexity Theory in a Nutshell

3 Branch-and-Bound

4 Branch-and-Cut for Ising Spin Glasses

5 Branch-and-Cut for Potts Spin Glasses

Prerequisites: Optimization
Terminology

• linear optimization problem: matrix A, vector b

min
x
{c⊤x | Ax ≤ b, x ≥ 0}

• feasible solutions: x ∈ Rn, s.t. Ax ≤ b, x ≥ 0

• X is a relaxation, if {x | Ax ≤ b, x ≥ 0} ⊆ X

• linear optimization problems can be solved within
polynomial time (ellipsoid method)

• and fast in practice (simplex algorithm)

• software: CPLEX (ILOG, commercial) or CLP (open
source)

• in the following we consider linear optimization problems
as a black box

Prerequisites: Optimization
Terminology

• linear optimization problem: matrix A, vector b

min
x
{c⊤x | Ax ≤ b, x ≥ 0}

• feasible solutions: x ∈ Rn, s.t. Ax ≤ b, x ≥ 0

• X is a relaxation, if {x | Ax ≤ b, x ≥ 0} ⊆ X

• linear optimization problems can be solved within
polynomial time (ellipsoid method)

• and fast in practice (simplex algorithm)

• software: CPLEX (ILOG, commercial) or CLP (open
source)

• in the following we consider linear optimization problems
as a black box

Prerequisites: Optimization
Terminology

• linear optimization problem: matrix A, vector b

min
x
{c⊤x | Ax ≤ b, x ≥ 0}

• feasible solutions: x ∈ Rn, s.t. Ax ≤ b, x ≥ 0

• X is a relaxation, if {x | Ax ≤ b, x ≥ 0} ⊆ X

• linear optimization problems can be solved within
polynomial time (ellipsoid method)

• and fast in practice (simplex algorithm)

• software: CPLEX (ILOG, commercial) or CLP (open
source)

• in the following we consider linear optimization problems
as a black box

Prerequisites: Optimization
Terminology

• linear optimization problem: matrix A, vector b

min
x
{c⊤x | Ax ≤ b, x ≥ 0}

• feasible solutions: x ∈ Rn, s.t. Ax ≤ b, x ≥ 0

• X is a relaxation, if {x | Ax ≤ b, x ≥ 0} ⊆ X

• linear optimization problems can be solved within
polynomial time (ellipsoid method)

• and fast in practice (simplex algorithm)

• software: CPLEX (ILOG, commercial) or CLP (open
source)

• in the following we consider linear optimization problems
as a black box

Prerequisites: Optimization
Terminology

• linear optimization problem: matrix A, vector b

min
x
{c⊤x | Ax ≤ b, x ≥ 0}

• feasible solutions: x ∈ Rn, s.t. Ax ≤ b, x ≥ 0

• X is a relaxation, if {x | Ax ≤ b, x ≥ 0} ⊆ X

• linear optimization problems can be solved within
polynomial time (ellipsoid method)

• and fast in practice (simplex algorithm)

• software: CPLEX (ILOG, commercial) or CLP (open
source)

• in the following we consider linear optimization problems
as a black box

Branch & Bound

• standard approach for the solution of NP-hard integer and
mixed-integer optimization problems

• can be used for a wide class of problems

• basic idea is very simple

• however: practical usefulness depends strongly on good
data structures, clever implementation, etc.

known names for Branch & Bound:

• implicit enumeration

• divide & conquer

• backtracking

ingredients:

• strategy for dividing a problem into sub problems.

• method for calculating upper and lower bounds.

Branch & Bound

• standard approach for the solution of NP-hard integer and
mixed-integer optimization problems

• can be used for a wide class of problems

• basic idea is very simple

• however: practical usefulness depends strongly on good
data structures, clever implementation, etc.

known names for Branch & Bound:

• implicit enumeration

• divide & conquer

• backtracking

ingredients:

• strategy for dividing a problem into sub problems.

• method for calculating upper and lower bounds.

Branch & Bound

• standard approach for the solution of NP-hard integer and
mixed-integer optimization problems

• can be used for a wide class of problems

• basic idea is very simple

• however: practical usefulness depends strongly on good
data structures, clever implementation, etc.

known names for Branch & Bound:

• implicit enumeration

• divide & conquer

• backtracking

ingredients:

• strategy for dividing a problem into sub problems.

• method for calculating upper and lower bounds.

Branch & Bound

• standard approach for the solution of NP-hard integer and
mixed-integer optimization problems

• can be used for a wide class of problems

• basic idea is very simple

• however: practical usefulness depends strongly on good
data structures, clever implementation, etc.

known names for Branch & Bound:

• implicit enumeration

• divide & conquer

• backtracking

ingredients:

• strategy for dividing a problem into sub problems.

• method for calculating upper and lower bounds.

Basic Idea of Branch & Bound
In the following wlog: consider maximization problems.

• start solving the original problem

• bounds through feasible solutions and through relaxations

• in case bounds are equal: optimality proven

• otherwise: divide the problem into subproblems so that
the combination of the solutions in the sub problems can
be combined to the solutions of the original problem

• solve sub problem through
1 determination of an optimum solution, or
2 proof of its infeasibility, or
3 calculation of an upper bound that is not better than the

currently best known solution, or
4 subdividing the problem into further sub problems.

obviously:

• method terminates correctly in case splitting is done in a
reasonable way.

Basic Idea of Branch & Bound
In the following wlog: consider maximization problems.

• start solving the original problem

• bounds through feasible solutions and through relaxations

• in case bounds are equal: optimality proven

• otherwise: divide the problem into subproblems so that
the combination of the solutions in the sub problems can
be combined to the solutions of the original problem

• solve sub problem through
1 determination of an optimum solution, or
2 proof of its infeasibility, or
3 calculation of an upper bound that is not better than the

currently best known solution, or
4 subdividing the problem into further sub problems.

obviously:

• method terminates correctly in case splitting is done in a
reasonable way.

Basic Idea of Branch & Bound
In the following wlog: consider maximization problems.

• start solving the original problem

• bounds through feasible solutions and through relaxations

• in case bounds are equal: optimality proven

• otherwise: divide the problem into subproblems so that
the combination of the solutions in the sub problems can
be combined to the solutions of the original problem

• solve sub problem through
1 determination of an optimum solution, or
2 proof of its infeasibility, or
3 calculation of an upper bound that is not better than the

currently best known solution, or
4 subdividing the problem into further sub problems.

obviously:

• method terminates correctly in case splitting is done in a
reasonable way.

Basic Idea of Branch & Bound
In the following wlog: consider maximization problems.

• start solving the original problem

• bounds through feasible solutions and through relaxations

• in case bounds are equal: optimality proven

• otherwise: divide the problem into subproblems so that
the combination of the solutions in the sub problems can
be combined to the solutions of the original problem

• solve sub problem through
1 determination of an optimum solution, or
2 proof of its infeasibility, or
3 calculation of an upper bound that is not better than the

currently best known solution, or
4 subdividing the problem into further sub problems.

obviously:

• method terminates correctly in case splitting is done in a
reasonable way.

Basic Idea of Branch & Bound

associate to the solution process in a natural way a branch &
bound-tree:

• the root is the original problem

• a node represents some sub problem

• a direct child of a node u represents a sub problem of u

• tree leafs represent ‘solved’ problems

BRANCH & BOUND(A, b, c , N1)
(Dakin) for MIP

Input:
mixed-integer problem (MIP) with rational data

max cT

(MIP=) Ax = b

x ≥ 0
xi integer ∀i ∈ N1

Output: solution of the problem or proof of infeasibility.

BRANCH & BOUND(A, b, c , N1)
(Dakin) for (MIP)

1 initialize the list of active sub problems with the original
problem. opt = −∞

2 while list of active sub problems not empty do
begin

3 choose from the list of active problems one. ‘Solve’ it by:
1 find optimal solution for the sub problem, or
2 prove that the sub problem does not have a feasible

solution, or
3 prove by using a relaxation (bound) that there does not

exist a feasible solution for the sub problem with a higher
objective function value than the up to now best known
solution (fathoming)

4 if above not possible: branch, i.e., divide the problem into
further sub problems, add them to list of active problems.

end
4 if (opt > −∞) return best known feasible solution as

optimum. otherwise: return ‘problem infeasible’.

BRANCH & BOUND(A, b, c , N1)
(Dakin) for (MIP)

1 initialize the list of active sub problems with the original
problem. opt = −∞

2 while list of active sub problems not empty do
begin

3 choose from the list of active problems one. ‘Solve’ it by:
1 find optimal solution for the sub problem, or
2 prove that the sub problem does not have a feasible

solution, or
3 prove by using a relaxation (bound) that there does not

exist a feasible solution for the sub problem with a higher
objective function value than the up to now best known
solution (fathoming)

4 if above not possible: branch, i.e., divide the problem into
further sub problems, add them to list of active problems.

end
4 if (opt > −∞) return best known feasible solution as

optimum. otherwise: return ‘problem infeasible’.

BRANCH & BOUND(A, b, c , N1)
(Dakin) for (MIP)

1 initialize the list of active sub problems with the original
problem. opt = −∞

2 while list of active sub problems not empty do
begin

3 choose from the list of active problems one. ‘Solve’ it by:
1 find optimal solution for the sub problem, or
2 prove that the sub problem does not have a feasible

solution, or
3 prove by using a relaxation (bound) that there does not

exist a feasible solution for the sub problem with a higher
objective function value than the up to now best known
solution (fathoming)

4 if above not possible: branch, i.e., divide the problem into
further sub problems, add them to list of active problems.

end
4 if (opt > −∞) return best known feasible solution as

optimum. otherwise: return ‘problem infeasible’.

Discussion

• important: keep the size of the tree ‘small’ ⇒ need good
bounds.

• to 3 (2): if a relaxation of a sub problem is infeasible →
sub problem itself is infeasible.

• For fathoming a sub problem in 3 (3): need good upper
and lower bounds. Lower bounds: given by feasible
solutions calculated by heuristics, or by an optimal
solution of a sub problem.

• easiest branching: choose some xe that needs to be
integer, however the optimum in the LP is x⋆

e 6∈ Z.
Replace the current sub problem by two, in one of which
one adds the inequality xe ≤ ⌊x⋆

e ⌋, and in the other
xe ≥ ⌈x⋆

e ⌉.

• upper bounds given by the values of the LP-relaxations.

Discussion

• important: keep the size of the tree ‘small’ ⇒ need good
bounds.

• to 3 (2): if a relaxation of a sub problem is infeasible →
sub problem itself is infeasible.

• For fathoming a sub problem in 3 (3): need good upper
and lower bounds. Lower bounds: given by feasible
solutions calculated by heuristics, or by an optimal
solution of a sub problem.

• easiest branching: choose some xe that needs to be
integer, however the optimum in the LP is x⋆

e 6∈ Z.
Replace the current sub problem by two, in one of which
one adds the inequality xe ≤ ⌊x⋆

e ⌋, and in the other
xe ≥ ⌈x⋆

e ⌉.

• upper bounds given by the values of the LP-relaxations.

Discussion

• important: keep the size of the tree ‘small’ ⇒ need good
bounds.

• to 3 (2): if a relaxation of a sub problem is infeasible →
sub problem itself is infeasible.

• For fathoming a sub problem in 3 (3): need good upper
and lower bounds. Lower bounds: given by feasible
solutions calculated by heuristics, or by an optimal
solution of a sub problem.

• easiest branching: choose some xe that needs to be
integer, however the optimum in the LP is x⋆

e 6∈ Z.
Replace the current sub problem by two, in one of which
one adds the inequality xe ≤ ⌊x⋆

e ⌋, and in the other
xe ≥ ⌈x⋆

e ⌉.

• upper bounds given by the values of the LP-relaxations.

Discussion

• important: keep the size of the tree ‘small’ ⇒ need good
bounds.

• to 3 (2): if a relaxation of a sub problem is infeasible →
sub problem itself is infeasible.

• For fathoming a sub problem in 3 (3): need good upper
and lower bounds. Lower bounds: given by feasible
solutions calculated by heuristics, or by an optimal
solution of a sub problem.

• easiest branching: choose some xe that needs to be
integer, however the optimum in the LP is x⋆

e 6∈ Z.
Replace the current sub problem by two, in one of which
one adds the inequality xe ≤ ⌊x⋆

e ⌋, and in the other
xe ≥ ⌈x⋆

e ⌉.

• upper bounds given by the values of the LP-relaxations.

Discussion

• important: keep the size of the tree ‘small’ ⇒ need good
bounds.

• to 3 (2): if a relaxation of a sub problem is infeasible →
sub problem itself is infeasible.

• For fathoming a sub problem in 3 (3): need good upper
and lower bounds. Lower bounds: given by feasible
solutions calculated by heuristics, or by an optimal
solution of a sub problem.

• easiest branching: choose some xe that needs to be
integer, however the optimum in the LP is x⋆

e 6∈ Z.
Replace the current sub problem by two, in one of which
one adds the inequality xe ≤ ⌊x⋆

e ⌋, and in the other
xe ≥ ⌈x⋆

e ⌉.

• upper bounds given by the values of the LP-relaxations.

Example
Consider

max −7x1 − 3x2 − 4x3

x1 + 2x2 + 3x3 − x4 = 8
3x1 + x2 + x3 − x5 = 5

x1, x2, x3, x4, x5 ≥ 0
x1, x2, x3, x4, x5 ∈ Z

LP-Optimum

x3 = x4 = x5 = 0 , x1 =
2

5
, x2 =

19

5

value c∗ = −71
5 (= −14.2). upper bound: −15

branch on x2

P1 = P0 ∩ {x | x2 ≤ 3}

P2 = P0 ∩ {x | x2 ≥ 4}

choose P1 as next problem.

Example

optimum solution of LP-relaxation LP1 is

x4 = x5 = 0 , x1 =
1

2
, x2 = 2 , x3 =

1

2

and c∗ = −29
2 (upper bound −15).

subdivide P1, get:

P3 = P1 ∩ {x | x1 ≤ 0}

P4 = P1 ∩ {x | x1 ≥ 1}

active problems are K = {P2, P3, P4}. solving LP3 gives

x1 = x5 = 0 , x2 = 3 , x3 = 2 , x4 = 4

and c∗ = −17. then P3 is solved , best solution (global lower
bound) has value −17.

Example
solve P4, get:

x4 = 0 , x1 = 1 , x2 = 3 , x3 =
1

3
, x5 =

4

3

and c∗ = −52
3 = −171

3 . The found upper bound −18 is worse
than best solution, and P4 is fathomed.
Need to solve P2. We get as a solution of the LP-relaxation

x3 = x5 = 0 , x1 =
1

3
, x2 = 4 , x4 =

1

3

and c∗ = −43
3 . P2 is not yet solved. Branch on x1

P5 = P2 ∩ {x | x1 ≤ 0}

P6 = P2 ∩ {x | x1 ≥ 1}

solving LP5 yields

x1 = x3 = x5 = 0 , x2 = 5 , x4 = 2

and c∗ = −15. This is the new best solution with value −15.
P5 is then solved.

Example

No need to consider P6 further, as because of LP2 no better
solution is possible.

P4P3

P1

P0

P2

P5 P6

U = −∞
c∗ = −15

U = −17
c∗ = −15

U = −15
c∗ = −15

c∗ = −15

U = −17
c∗ = −18

x2 ≥ 4x2 ≤ 3

x1 ≤ 0

x1 ≥ 1x1 ≤ 0 x1 ≥ 1

U = −∞

Implementation Details

• branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

• Exploit logical implications. E.g. for constraints
∑

i∈S xi = 1, xi ∈ {0, 1}: If some xj = 1 → all other
variables in S have value 0. ⇒ branch with

∑

i∈S1
xi = 0

and
∑

i∈S2
xi = 0 with S1 ∪ S2 = S

• primal heuristics: sometimes it takes long until good
feasible solutions are found. → additional heuristics

• good strategies for sub problem selection strongly
influence the total number of sub problems to be solved.
It is not easy to devise a strategy that works well for any
problem. often used: ”‘Best first search”’

• natural parallelisation possible, as all active nodes can be
solved simultaneously.

Implementation Details

• branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

• Exploit logical implications. E.g. for constraints
∑

i∈S xi = 1, xi ∈ {0, 1}: If some xj = 1 → all other
variables in S have value 0. ⇒ branch with

∑

i∈S1
xi = 0

and
∑

i∈S2
xi = 0 with S1 ∪ S2 = S

• primal heuristics: sometimes it takes long until good
feasible solutions are found. → additional heuristics

• good strategies for sub problem selection strongly
influence the total number of sub problems to be solved.
It is not easy to devise a strategy that works well for any
problem. often used: ”‘Best first search”’

• natural parallelisation possible, as all active nodes can be
solved simultaneously.

Implementation Details

• branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

• Exploit logical implications. E.g. for constraints
∑

i∈S xi = 1, xi ∈ {0, 1}: If some xj = 1 → all other
variables in S have value 0. ⇒ branch with

∑

i∈S1
xi = 0

and
∑

i∈S2
xi = 0 with S1 ∪ S2 = S

• primal heuristics: sometimes it takes long until good
feasible solutions are found. → additional heuristics

• good strategies for sub problem selection strongly
influence the total number of sub problems to be solved.
It is not easy to devise a strategy that works well for any
problem. often used: ”‘Best first search”’

• natural parallelisation possible, as all active nodes can be
solved simultaneously.

Implementation Details

• branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

• Exploit logical implications. E.g. for constraints
∑

i∈S xi = 1, xi ∈ {0, 1}: If some xj = 1 → all other
variables in S have value 0. ⇒ branch with

∑

i∈S1
xi = 0

and
∑

i∈S2
xi = 0 with S1 ∪ S2 = S

• primal heuristics: sometimes it takes long until good
feasible solutions are found. → additional heuristics

• good strategies for sub problem selection strongly
influence the total number of sub problems to be solved.
It is not easy to devise a strategy that works well for any
problem. often used: ”‘Best first search”’

• natural parallelisation possible, as all active nodes can be
solved simultaneously.

Implementation Details

• branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

• Exploit logical implications. E.g. for constraints
∑

i∈S xi = 1, xi ∈ {0, 1}: If some xj = 1 → all other
variables in S have value 0. ⇒ branch with

∑

i∈S1
xi = 0

and
∑

i∈S2
xi = 0 with S1 ∪ S2 = S

• primal heuristics: sometimes it takes long until good
feasible solutions are found. → additional heuristics

• good strategies for sub problem selection strongly
influence the total number of sub problems to be solved.
It is not easy to devise a strategy that works well for any
problem. often used: ”‘Best first search”’

• natural parallelisation possible, as all active nodes can be
solved simultaneously.

Conclusions

• for hard integer or combinatorial optimization problems,
typically, some variant of Branch&Bound is used.

• Modern IP-Solvers, however, can drastically reduce the
size of the branch-and-bound tree and therefore go to
large system sizes. (e.g., as contained in the Mixed Integer
Problem Library MIPLIB that yields a test-bed for solution
algorithms)

Conclusions

• for hard integer or combinatorial optimization problems,
typically, some variant of Branch&Bound is used.

• Modern IP-Solvers, however, can drastically reduce the
size of the branch-and-bound tree and therefore go to
large system sizes. (e.g., as contained in the Mixed Integer
Problem Library MIPLIB that yields a test-bed for solution
algorithms)

