Exact Optimization in Spin-Glass Physics

Frauke Liers

Department of Computer Science, University of Cologne

Spring School Leipzig 2008

Outline
@ Spin Glasses

Complexity Theory in a Nutshell
Branch-and-Bound

«O>r «Fr « >

4« =

nae

Outline

@ Spin Glasses
® Complexity Theory in a Nutshell

Outline

@ Spin Glasses
® Complexity Theory in a Nutshell
©® Branch-and-Bound

Outline

@ Spin Glasses

® Complexity Theory in a Nutshell

©® Branch-and-Bound

O Branch-and-Cut for Ising Spin Glasses

Outline

@ Spin Glasses

® Complexity Theory in a Nutshell

©® Branch-and-Bound

O Branch-and-Cut for Ising Spin Glasses
@ Branch-and-Cut for Potts Spin Glasses

Spin Glasses

e.g. RboCuy_xCoxFy
experiments (Cannella & Mydosh 1972) reveal:
at low temperatures: — phase transition spin glass state

Spin Glasses

e.g. RboCuy_xCoxFy
experiments (Cannella & Mydosh 1972) reveal:

at low temperatures: — phase transition spin glass state

Edwards Anderson Model (1975) ¥
.

e short-range model
e interactions randomly chosen
o Jj€ {+1,-1} or
e Gaussian distributed
e H(S)=— Z<i,j> J;i5iSj, with
spin variables S;

ground state: min{H(S) | S is spin configuration}

Why Exact Ground States?

in contrast to Monte-Carlo Simulations or genetic algorithms:
we want to compute exact solutions
disadvantages of heuristic methods:

Why Exact Ground States?

in contrast to Monte-Carlo Simulations or genetic algorithms:
we want to compute exact solutions
disadvantages of heuristic methods:

e might become stuck in local minima and do not know
anything about the quality of the solution — physical
analysis might be biased.

Why Exact Ground States?

in contrast to Monte-Carlo Simulations or genetic algorithms:
we want to compute exact solutions
disadvantages of heuristic methods:

e might become stuck in local minima and do not know
anything about the quality of the solution — physical
analysis might be biased.

e configurations with almost the same energy might be very
different — not clear whether results of spin-spin
correlation functions can yield relevant information.

Cologne Spin-Glass Ground-State
Server

e An exact ground state can be computed via our server on
the web
www.informatik.uni-koeln.de

e submit jobs via a command-line client (or via
www-interface) and get exact results via email. (will be
extended in the future.)

e current focus: compute exact results for hard instances of
the problem.

Cologne Spin-Glass Ground-State
Server

e An exact ground state can be computed via our server on
the web
www.informatik.uni-koeln.de

e submit jobs via a command-line client (or via
www-interface) and get exact results via email. (will be
extended in the future.)

e current focus: compute exact results for hard instances of
the problem.

e 2d spin glasses
e 3d spin glasses
e SK spin glasses

‘This is a Hard Problem’ means...

e NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

‘This is a Hard Problem’ means...

e NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

e e.g., 2d Ising spin glasses with an external field or 3d
lattices

‘This is a Hard Problem’ means...

e NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

e e.g., 2d Ising spin glasses with an external field or 3d
lattices

e whereas 2d, no field, free boundaries: ‘easy’

‘This is a Hard Problem’ means...

e NP-hard, i.e. we cannot expect to find an algorithm that
solves it in time growing polynomial in the size of the input

e e.g., 2d Ising spin glasses with an external field or 3d
lattices

e whereas 2d, no field, free boundaries: ‘easy’

more details later.

Outline

@ Spin Glasses

® Complexity Theory in a Nutshell

©® Branch-and-Bound

O Branch-and-Cut for Ising Spin Glasses
@ Branch-and-Cut for Potts Spin Glasses

General Concepts

many problems can be formulated on graphs G = (V. E) with
node set V and edge set E.
Edge weights c. € R might be present.

i

Figure 1.3 The Commis-Voyageur tour in Germary.

General Concepts
many problems can be formulated on graphs G = (V. E) with
node set V and edge set E.
Edge weights c. € R might be present.
Examples (from ABC?'s TSPbook):

i

Figure 1.3 The Commis-Voyageur tour in Germary.

General Concepts
many problems can be formulated on graphs G = (V. E) with
node set V and edge set E.
Edge weights c. € R might be present.
Examples (from ABC?'s TSPbook):

tspbook Aprl 17,2006

h
Random Eudidean problems, with the locations of the cities seected ran-

tational studies, particulaly before the avalability of the TSPLIB. More recenty,

4, Haton, and
Hammerdey [43] TSP constant has. interest In this cless of problems.

General Concepts
many problems can be formulated on graphs G = (V. E) with
node set V and edge set E.
Edge weights c. € R might be present.
Examples (from ABC?'s TSPbook):

d15112

Sw24978 plas3s10

Figure 1.47 Optimal tours.

General Concepts

many problems can be formulated on graphs G = (V, E) with
node set V and edge set E.
Edge weights c. € R might be present.
Examples:
e shortest paths in networks
e shortest traveling salesman tour (TSP)
e etc.

Some of them are ‘easy’, some ‘hard’.
...in more detail:

Complexity of Decision Problems

A problem P is a decision problem, if the set of all instances
Ip of P is partitioned into the ‘yes’ and the ‘no’-instances. For
each instance we ask: Is it a ‘yes’- or a ‘no’-instance?

Complexity of Decision Problems

A problem P is a decision problem, if the set of all instances
Ip of P is partitioned into the ‘yes’ and the ‘no’-instances. For
each instance we ask: Is it a ‘yes’- or a ‘no’-instance?

Complexity of Decision Problems

Example

@ instance: ne N
question: Is n a prime number?

Complexity of Decision Problems

Example
@ instance: ne N
question: Is n a prime number?
@® instance: graph G = (V,E)
question: Is G connected?

Complexity of Decision Problems

Example
@ instance: ne N
question: Is n a prime number?
@® instance: graph G = (V, E)
question: Is G connected?

A decision problem is solved by an algorithm A, if A for each
instance terminates and gives the correct ‘yes’ or ‘no’ answer.

Complexity Class P

Contains all decision problems P for which there exists a
solution algorithm that solves P within a time polynomially
bounded in the size needed to store the input, i.e., number of
bits.

Complexity Class P

Contains all decision problems P for which there exists a
solution algorithm that solves P within a time polynomially
bounded in the size needed to store the input, i.e., number of
bits.

polynomially bounded?

e assume: each elementary algorithmic step (summation,
assignment, etc.) has cost 1.

e Let input for some problem be stored by m bits. (e.g., for
n€ N, m=logn bits are needed.)

e A decision problem is in P, if the number of steps in the
solution algorithm asymptotically only grows as fast as
mk, with k € V.

Example

@ instance: ne N
question: Is n a prime number? Is in P (recent result by
Agrawal et al. from 2002).

Example

@ instance: ne N
question: Is n a prime number? Is in P (recent result by
Agrawal et al. from 2002).

@® instance: graph G = (V, E)
question: Is G connected?. Is in P. (breadth-first search)

Complexity Class NP

NP: nondeterministic polynomial

A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no" answer.

Complexity Class NP

NP: nondeterministic polynomial

A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no" answer.

Example:

e for boolean variables xi, ..., x,: given a clause
x1Voxp...xk Axa V Xq...x). Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

Complexity Class NP

NP: nondeterministic polynomial

A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no" answer.

Example:

e for boolean variables xi, ..., x,: given a clause
x1Voxp...xk Axa V Xq...x). Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

e given a graph G = (V, E) with edge weights c., and
k € N. Is there a tour that visits every node exactly once
with length < k? (TSP)

Complexity Class NP

NP: nondeterministic polynomial

A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no" answer.

Example:

e for boolean variables xi, ..., x,: given a clause
x1Voxp...xk Axa V Xq...x). Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

e given a graph G = (V, E) with edge weights c., and
k € N. Is there a tour that visits every node exactly once
with length < k? (TSP)

Here, a candidate solution can be verified by insertion.

Complexity Class NP

NP: nondeterministic polynomial

A decision problem is in NP, if for an arbitrary instance and for
a given (possible) solution it can be verified in polynomial time
whether the solution yields a ‘yes’ or a ‘no" answer.

Example:

e for boolean variables xi, ..., x,: given a clause
x1Voxp...xk Axa V Xq...x). Is there a true/false
assignment of values to the variables satisfying the clause?
(SAT)

e given a graph G = (V, E) with edge weights c., and
k € N. Is there a tour that visits every node exactly once
with length < k? (TSP)

Here, a candidate solution can be verified by insertion.

Complexity Class NP

name NP: alternative classification can be given in which
constructive nondetermininistic algorithms need to have
polynomial running time. In the latter, guessing steps are
allowed.

Complexity Class NP

name NP: alternative classification can be given in which
constructive nondetermininistic algorithms need to have
polynomial running time. In the latter, guessing steps are
allowed.

e obviously: P C NP.

Complexity Class NP

name NP: alternative classification can be given in which
constructive nondetermininistic algorithms need to have
polynomial running time. In the latter, guessing steps are
allowed.

e obviously: P C NP.

. . . ?
e core problem in theoretical computer science: P = NP.

Complexity Class NP

A problem is NP-complete, if it belongs to the ‘hardest’
problems in NP. Knowing a polynomial-time algorithm for one
NP-complete problem would immediately yield polynomial-time
algorithms for all NP-complete problems.

Complexity Class NP

A problem is NP-complete, if it belongs to the ‘hardest’
problems in NP. Knowing a polynomial-time algorithm for one
NP-complete problem would immediately yield polynomial-time
algorithms for all NP-complete problems.

e SAT was the first problem to be proven to be
NP-complete (Cook (1971))

e For many other problems NP-completeness was proven
since then by reduction to and from other NP-complete
problems

Complexity Class NP

A problem is NP-complete, if it belongs to the ‘hardest’
problems in NP. Knowing a polynomial-time algorithm for one
NP-complete problem would immediately yield polynomial-time
algorithms for all NP-complete problems.

e SAT was the first problem to be proven to be
NP-complete (Cook (1971))

e For many other problems NP-completeness was proven
since then by reduction to and from other NP-complete
problems

Examples

{0, 1}-integral solution for inequality system (301/P)
instance: Ac Zm™<" pec ZM

question: Does there exist an x € {0,1}” with Ax > b?
301/P is NP-complete.

Optimization Problems

an optimization problem is characterized by

e the set of instances
e information whether we should maximize or minimize
e the set of feasible solutions

e for each instance and each feasible solution, the objective
function value of the solution

Example

MINIMUM TRAVELING SALESMAN (TSP)

instance: set of cities {1,2,...,n}, distance matrix D € Z7*"
solution: permutation {i, i2,...,in} of {1,2,... n} (‘tour’
through all cities)

objective function value: (Z;} dik,ik+1) +di, i

Example

MINIMUM TRAVELING SALESMAN (TSP)

instance: set of cities {1,2,...,n}, distance matrix D € Z7*"
solution: permutation {i, i2,...,in} of {1,2,... n} (‘tour’
through all cities)

objective function value: (Z;} dik,ik+1) +di, i

optimal tour (1,2, 4,3), cost 6.
The associated decision problems is NP-complete.

The Classes NP and NPO

An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.

The Classes NP and NPO

An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

e shortest paths

e minimum spanning trees

e matching

e etc.

The Classes NP and NPO

An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

e shortest paths

e minimum spanning trees

e matching

e etc.

An optimization problem is in NPO, if

e the instances can be recognized in polynomial time

The Classes NP and NPO

An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

e shortest paths

e minimum spanning trees
matching
e etc.

An optimization problem is in NPO, if

e the instances can be recognized in polynomial time
e for all instances the size of a feasible solution is
polynomially bounded in the size of the input

The Classes NP and NPO

An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

e shortest paths

e minimum spanning trees

e matching

e etc.
An optimization problem is in NPO, if

e the instances can be recognized in polynomial time

e for all instances the size of a feasible solution is

polynomially bounded in the size of the input

e for all y that are polynomially bounded it can be verified
in polynomial time whether y is a feasible solution

The Classes NP and NPO

An optimization problem is in PO, if there exists a
polynomial-time algorithm that for each instance of the
problem determines an optimum solution and returns its value.
Example:

e shortest paths

e minimum spanning trees
matching

e etc.

An optimization problem is in NPO, if

e the instances can be recognized in polynomial time

e for all instances the size of a feasible solution is
polynomially bounded in the size of the input

e for all y that are polynomially bounded it can be verified
in polynomial time whether y is a feasible solution

e the objective function value can be determined in
polynomial time for each instance and feasible solution

If the corresponding decision version is NP-complete, the
optimization version is called NP-hard.

If the corresponding decision version is NP-complete, the
optimization version is called NP-hard.
Example:

e TSP
e minimum SAT

e etc.

Our Focus

Martin Weigel has already pointed you to several relevant
polynomial optimization problems with applications in physics.
e matching
e flows

e etc.

Our Focus

Martin Weigel has already pointed you to several relevant
polynomial optimization problems with applications in physics.

e matching
o flows

e etc.

In the following: we focus on the NP-hard variants.

Spin Glasses

e.g. RboCuy_xCoxFy
experiments (Cannella & Mydosh 1972) reveal:
at low temperatures: — phase transition spin glass state

Spin Glasses

e.g. RboCuy_xCoxFy
experiments (Cannella & Mydosh 1972) reveal:

at low temperatures: — phase transition spin glass state

Edwards Anderson Model (1975) ¥
.

e short-range model
e interactions randomly chosen
o Jj€ {+1,-1} or
e Gaussian distributed
e H(S)=— Z<i,j> J;i5iSj, with
spin variables S;

ground state: min{H(S) | S is spin configuration}

Exact Ground States of Hard
Instances

Spinglass Graph G=(V, E)

3 e nodeof G
! a4 e—e edge of G
coupling qj edge weight ﬁ

configuration node partition V \"A

Exact Ground States of Hard
Instances

Si=+1

Exact Ground States of Hard

Instances
Jij —i o °
[_ O L]
[] ®
Si=—1 Si=+1
G = (V,E)

H= =3 cce JiSiS;

Computing Exact Grounéi" States

)

i

S = -1 Si=+1

HS)+ Y Jy=) Ji(1-5S5)

(i,j)EE (ij)EE
B 2
o

=2> " J;

Si#S;

S # S

, otherwise

Computing Exact Ground States

H(S) + const

=2> " J;

Si#S; its weight: Z(i,j)ecut Cij

cut ={(i,j) € E|(i,j) =o—o}

Computing Exact Ground States

ij C,'j

cut = {(/,j) € E|(i,)) =o—e}

H(S)+const = 2 Z Jj weight 3~ hecut Gij
Si#S;

with ¢ = —Jj; :

‘ground state min H(ﬁ)‘ ’maximum cut in G\

NP-hard in general

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Complexity Status of Maximum

Cut

e for general instances NP-hard, i.e. we cannot expect to
find an algorithm that solves it in time growing polynomial
in the size of the input

Complexity Status of Maximum

Cut

e for general instances NP-hard, i.e. we cannot expect to
find an algorithm that solves it in time growing polynomial
in the size of the input

e NP-hard for, e.g., 2d Ising spin glasses with an external
field or 3d lattices. more general: on general graphs or on
almost planar graphs

Complexity Status of Maximum

Cut

e for general instances NP-hard, i.e. we cannot expect to
find an algorithm that solves it in time growing polynomial
in the size of the input

e NP-hard for, e.g., 2d Ising spin glasses with an external
field or 3d lattices. more general: on general graphs or on
almost planar graphs

e 2d, no field, free boundaries: polynomial solvable (see M.
Weigel's talk)

Complexity Status of Maximum

Cut

for general instances NP-hard, i.e. we cannot expect to
find an algorithm that solves it in time growing polynomial
in the size of the input

NP-hard for, e.g., 2d Ising spin glasses with an external
field or 3d lattices. more general: on general graphs or on
almost planar graphs

2d, no field, free boundaries: polynomial solvable (see M.
Weigel's talk)

Goemans und Williamson found a 0.878-approximation
algorithm, i.e.,. a polynomial algorithm, in which the
computed solution has a value of at least 0.878 times the
value of an optimum cut. However: If P#£NP, there does
not exist a polynomial algorithm that computes a solution
with value at least 98% of the value of an maximum cut.

Applications of Maximum Cut

e quadratic 0-1 optimization: Given A€ R"*" and a € R",
compute min{x"Ax +a’x | x € {0,1}"}

Applications of Maximum Cut

e quadratic 0-1 optimization: Given A€ R"*" and a € R",
compute min{x"Ax +a’x | x € {0,1}"}

e separation can also be used in practice for quadratic
optimization with additional side constraints

Applications of Maximum Cut

e quadratic 0-1 optimization: Given A€ R"*" and a € R",
compute min{x"Ax +a’x | x € {0,1}"}

e separation can also be used in practice for quadratic
optimization with additional side constraints

e layout of electronic circuits

Applications of Maximum Cut

quadratic 0-1 optimization: Given A€ R"*" and a€ R",
compute min{x"Ax +a’x | x € {0,1}"}

separation can also be used in practice for quadratic
optimization with additional side constraints

layout of electronic circuits

scheduling of sports leagues

etc.

Outline

@ Spin Glasses

® Complexity Theory in a Nutshell

©® Branch-and-Bound

O Branch-and-Cut for Ising Spin Glasses
@ Branch-and-Cut for Potts Spin Glasses

Prerequisites: Optimization
Terminology

¢ linear optimization problem: matrix A, vector b

min{ch | Ax < b,x >0}

Prerequisites: Optimization
Terminology

¢ linear optimization problem: matrix A, vector b

min{ch | Ax < b,x >0}

e feasible solutions: x € R", s.t. Ax<b,x>0

Prerequisites: Optimization
Terminology

¢ linear optimization problem: matrix A, vector b

min{ch | Ax < b,x >0}

¢ feasible solutions: x € R", s.t. Ax < b,x>0
e X is a relaxation, if {x | Ax < b,x >0} C X

Prerequisites: Optimization
Terminology

linear optimization problem: matrix A, vector b

min{ch | Ax < b,x >0}

feasible solutions: x € R", s.t. Ax < b, x>0
X is a relaxation, if {x | Ax < b,x >0} C X

linear optimization problems can be solved within
polynomial time (ellipsoid method)

and fast in practice (simplex algorithm)

Prerequisites: Optimization
Terminology

linear optimization problem: matrix A, vector b

min{ch | Ax < b,x >0}

feasible solutions: x € R", s.t. Ax < b, x>0
X is a relaxation, if {x | Ax < b,x >0} C X

linear optimization problems can be solved within
polynomial time (ellipsoid method)

and fast in practice (simplex algorithm)

software: CPLEX (ILOG, commercial) or CLP (open
source)

in the following we consider linear optimization problems
as a black box

Branch & Bound

e standard approach for the solution of NP-hard integer and
mixed-integer optimization problems

e can be used for a wide class of problems

Branch & Bound

standard approach for the solution of NP-hard integer and
mixed-integer optimization problems

can be used for a wide class of problems
basic idea is very simple

however: practical usefulness depends strongly on good
data structures, clever implementation, etc.

Branch & Bound

e standard approach for the solution of NP-hard integer and
mixed-integer optimization problems

e can be used for a wide class of problems

e basic idea is very simple

e however: practical usefulness depends strongly on good
data structures, clever implementation, etc.

known names for Branch & Bound:

e implicit enumeration
e divide & conquer

e backtracking

Branch & Bound

e standard approach for the solution of NP-hard integer and
mixed-integer optimization problems

e can be used for a wide class of problems

e basic idea is very simple

e however: practical usefulness depends strongly on good
data structures, clever implementation, etc.

known names for Branch & Bound:

e implicit enumeration
e divide & conquer

e backtracking
ingredients:
e strategy for dividing a problem into sub problems.

e method for calculating upper and lower bounds.

Basic Idea of Branch & Bound
In the following wlog: consider maximization problems.
e start solving the original problem
e bounds through feasible solutions and through relaxations

e in case bounds are equal: optimality proven

Basic Idea of Branch & Bound

In the following wlog: consider maximization problems.

start solving the original problem
bounds through feasible solutions and through relaxations
in case bounds are equal: optimality proven

otherwise: divide the problem into subproblems so that
the combination of the solutions in the sub problems can
be combined to the solutions of the original problem
solve sub problem through

Basic Idea of Branch & Bound

In the following wlog: consider maximization problems.

start solving the original problem
bounds through feasible solutions and through relaxations
in case bounds are equal: optimality proven
otherwise: divide the problem into subproblems so that
the combination of the solutions in the sub problems can
be combined to the solutions of the original problem
solve sub problem through

@ determination of an optimum solution, or

@ proof of its infeasibility, or

© calculation of an upper bound that is not better than the

currently best known solution, or
@ subdividing the problem into further sub problems.

Basic Idea of Branch & Bound

In the following wlog: consider maximization problems.

start solving the original problem
bounds through feasible solutions and through relaxations
in case bounds are equal: optimality proven
otherwise: divide the problem into subproblems so that
the combination of the solutions in the sub problems can
be combined to the solutions of the original problem
solve sub problem through

@ determination of an optimum solution, or

@ proof of its infeasibility, or

© calculation of an upper bound that is not better than the

currently best known solution, or
@ subdividing the problem into further sub problems.

obviously:

method terminates correctly in case splitting is done in a
reasonable way.

Basic Idea of Branch & Bound

associate to the solution process in a natural way a branch &
bound-tree:

the root is the original problem

e a node represents some sub problem

a direct child of a node u represents a sub problem of u

tree leafs represent ‘solved’ problems

BRANCH & BOUND(A, b, ¢, N;)
(Dakin) for MIP

Input:
mixed-integer problem (MIP) with rational data
max c’
(MIP=) Ax = b
x > 0

X; integer Vi € Ny

Output: solution of the problem or proof of infeasibility.

BRANCH & BOUND(A, b, ¢, Ny)
(Dakin) for (MIP)
@ initialize the list of active sub problems with the original
problem. opt = —o0
® while list of active sub problems not empty do

begin
© choose from the list of active problems one. ‘Solve' it by:

BRANCH & BOUND(A, b, c, N;)
(Dakin) for (MIP)
@ initialize the list of active sub problems with the original
problem. opt = —o0
® while list of active sub problems not empty do
begin
© choose from the list of active problems one. ‘Solve' it by:
@ find optimal solution for the sub problem, or
@ prove that the sub problem does not have a feasible
solution, or
© prove by using a relaxation (bound) that there does not
exist a feasible solution for the sub problem with a higher
objective function value than the up to now best known
solution (fathoming)
@ if above not possible: branch, i.e., divide the problem into
further sub problems, add them to list of active problems.
end

BRANCH & BOUND(A, b, c, N;)
(Dakin) for (MIP)
@ initialize the list of active sub problems with the original
problem. opt = —o0
® while list of active sub problems not empty do
begin
© choose from the list of active problems one. ‘Solve' it by:
@ find optimal solution for the sub problem, or
@ prove that the sub problem does not have a feasible
solution, or
© prove by using a relaxation (bound) that there does not
exist a feasible solution for the sub problem with a higher
objective function value than the up to now best known
solution (fathoming)
@ if above not possible: branch, i.e., divide the problem into
further sub problems, add them to list of active problems.
end
O if (opt > —oo) return best known feasible solution as
optimum. otherwise: return ‘problem infeasible’.

Discussion

e important: keep the size of the tree ‘small’ = need good
bounds.

Discussion

e important: keep the size of the tree ‘small’ = need good
bounds.

e to 3 (2): if a relaxation of a sub problem is infeasible —
sub problem itself is infeasible.

Discussion

e important: keep the size of the tree ‘small’ = need good
bounds.

e to 3 (2): if a relaxation of a sub problem is infeasible —
sub problem itself is infeasible.

e For fathoming a sub problem in 3 (3): need good upper
and lower bounds. Lower bounds: given by feasible
solutions calculated by heuristics, or by an optimal
solution of a sub problem.

Discussion

important: keep the size of the tree ‘small’ = need good
bounds.

to 3 (2): if a relaxation of a sub problem is infeasible —
sub problem itself is infeasible.

For fathoming a sub problem in 3 (3): need good upper
and lower bounds. Lower bounds: given by feasible
solutions calculated by heuristics, or by an optimal
solution of a sub problem.

easiest branching: choose some x, that needs to be
integer, however the optimum in the LP is xJ & Z.
Replace the current sub problem by two, in one of which
one adds the inequality x. < |xZ|, and in the other

Xe > [xZ].

Discussion

important: keep the size of the tree ‘small’ = need good
bounds.

to 3 (2): if a relaxation of a sub problem is infeasible —
sub problem itself is infeasible.

For fathoming a sub problem in 3 (3): need good upper
and lower bounds. Lower bounds: given by feasible
solutions calculated by heuristics, or by an optimal
solution of a sub problem.

easiest branching: choose some x, that needs to be
integer, however the optimum in the LP is xJ & Z.
Replace the current sub problem by two, in one of which
one adds the inequality x. < |xZ|, and in the other

Xe > [xZ].

upper bounds given by the values of the LP-relaxations.

Example

Consider
max —7x1 — 3x» — 4x3
x1 + 2 + 3x3 — xa
3x1 + x + x3 - X5
X1, X2, X3, X4, X5
X1, X2, X3, X4, X5
LP-Optimum
2 19
X3:X4:X5:0,X1237X2:€

value c* = —75—1 (= —14.2). upper bound: —15
branch on x»

Plzpoﬂ{X|X2§3}
P2=P00{X|X224}

choose P; as next problem.

m IV
[\QOU‘IOO

Example

optimum solution of LP-relaxation LP; is

1 1
X4:X5:07X1:§7X2:27X3:§

and c* = —22 (upper bound —15).
subdivide Py, get:

P3:P1ﬂ{X‘X1§O}
P4:P1ﬂ{X‘X12]_}

active problems are K = {P,, P3, P4}. solving LP3 gives
x1=x5=0,x=3,x3=2,x3=4

and ¢* = —17. then Ps is solved , best solution (global lower
bound) has value —17.

Example
solve Py, get:

1 4
xg =0, X1:1,X2:3,X3:§,X5:§
and c* = —% = —17%. The found upper bound —18 is worse

than best solution, and P, is fathomed.
Need to solve P,. We get as a solution of the LP-relaxation

1
x3=x5=0,x1==,x=4,x3=—

3 3
and c¢* = —?. P> is not yet solved. Branch on x;

Ps = PN {x|x <0}
Ps=PN{x|x >1}
solving LPs yields
x1=x3=x5=0,x=5,x,=2

and ¢* = —15. This is the new best solution with value —15.
Ps is then solved.

Example

No need to consider Pg further, as because of LP, no better
solution is possible.

U=-17

Implementation Details

e branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

Implementation Details

e branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

e Exploit logical implications. E.g. for constraints
YoiesXi =1, x; € {0,1}: If some x; =1 — all other
variables in S have value 0. = branch with 3 ;.5 x; =0
and EieSZ xi=0with S;US =S

Implementation Details

e branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

e Exploit logical implications. E.g. for constraints
YoiesXi =1, x; € {0,1}: If some x; =1 — all other
variables in S have value 0. = branch with 3 ;.5 x; =0
and EiESQ xi=0with S;US =S

e primal heuristics: sometimes it takes long until good
feasible solutions are found. — additional heuristics

Implementation Details

branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

Exploit logical implications. E.g. for constraints
YoiesXi =1, x; € {0,1}: If some x; =1 — all other
variables in S have value 0. = branch with 3 ;.5 x; =0
and EiESQ xi=0with S;US =S

primal heuristics: sometimes it takes long until good
feasible solutions are found. — additional heuristics

good strategies for sub problem selection strongly
influence the total number of sub problems to be solved.
It is not easy to devise a strategy that works well for any
problem. often used: "‘Best first search”’

Implementation Details

branching can also divide into more than 2 sub problems,
or by more complicated inequalities. Good choice of
branching variable is important!

Exploit logical implications. E.g. for constraints
YoiesXi =1, x; € {0,1}: If some x; =1 — all other
variables in S have value 0. = branch with 3 ;.5 x; =0
and EiESQ xi=0with S;US =S

primal heuristics: sometimes it takes long until good
feasible solutions are found. — additional heuristics

good strategies for sub problem selection strongly
influence the total number of sub problems to be solved.
It is not easy to devise a strategy that works well for any
problem. often used: "‘Best first search”’

natural parallelisation possible, as all active nodes can be
solved simultaneously.

Conclusions

e for hard integer or combinatorial optimization problems,
typically, some variant of Branch&Bound is used.

Conclusions

e for hard integer or combinatorial optimization problems,
typically, some variant of Branch&Bound is used.

e Modern IP-Solvers, however, can drastically reduce the
size of the branch-and-bound tree and therefore go to
large system sizes. (e.g., as contained in the Mixed Integer
Problem Library MIPLIB that yields a test-bed for solution
algorithms)

Hao

