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• Multicanonical sampling
• Parallel tempering
• Wang-Landau sampling

Review:  Algorithms for “complex” systems



NATURE

Simulation

Experiment Theory



ReminderReminder

The Partition function contains all
thermodynamic information:

!=
"

statesall

TkBeZ
/H

Simple Monte Carlo approach:  sample via a
random walk in probability space



Produce the nth state from the mth state … relative
probability is Pn / Pm → need only the energy difference,
i.e. Δ E = (En-Em   ) between the states

Any transition rate that satisfies  detailed balancedetailed balance   is
acceptable, usually the Metropolis form (Metropolis et al,
1953).

W(m→ n) =   τ o-1 exp (-ΔE/kBT),   ΔE > 0
      =  τ o-1                 ,   ΔE < 0

            where τ o  is the time required to attempt a spin-flip.

Single spin-flip sampling for the Single spin-flip sampling for the IsingIsing model model



MC Problems and ChallengesMC Problems and Challenges

Statics:  Monte Carlo methods are valuable, but near Tc

⇒ critical slowing downcritical slowing down for 2nd order transitions

⇒ metastabilitymetastability for 1st order transitions and for
systems with complex energy landscapes

 ∴∴    Try to reduce characteristic time scales or circumventTry to reduce characteristic time scales or circumvent
themthem

“Dynamics”:  stochastic vs deterministic



Review:  Wang-Landau samplingReview:  Wang-Landau sampling
  Random Walk in Energy Space with a Flat HistogramRandom Walk in Energy Space with a Flat Histogram

Estimate the density of states g(E) directly by performing
a random walk in energy space:

      1. Set g(E)=1;  choose a modification factor  (e.g. f0=e 
1 )

      2. Randomly flip a spin with probability:

    3. Set  g(Ei) → g(Ei)* f
      4. Continue until the histogram is “flat”;  decrease f , e.g. f !+1= f 1/2

      5. Repeat steps 2 - 4 until  f = fmin~ exp(10 
-8)

      6. Calculate properties using final density of states g(E)
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Density of States for the 2-dim Ising modelDensity of States for the 2-dim Ising model

Compare exact results with data from random walks in
energy space:  L× L lattices with periodic boundaries

ε = relative error  ( exact solution is known for L≤ 64 )



Free Energy of the 2-dim Free Energy of the 2-dim IsingIsing Model Model

 ε = relative error



Wang-Landau sampling at a 1st Order Transition

The q=10 Potts model in 2-dim
At Tc coexisting states are separated by an energy barrier



Applications toApplications to
““ComplexComplex”” Systems Systems



   

  Applications to Applications to ““ComplexComplex”” Systems Systems

 Spin glassesSpin glasses

 “Lattice proteins”

 “Real” proteins



A Magnetic System with Complex A Magnetic System with Complex ““OrderOrder””
The EA (Edwards-Anderson) spin glass model in 3 dim:
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First choose a finite lattice groundstate  

{ }!"

, then 
 

  
ionsconfiguratbondofnumber

Nnq
i

ii

#

parameter"orderEA"$ $ ><=
!

!""11

 

At Tc (if it exists) a spin glass state forms ⇒
get a “rough” energy landscape where multiple minima
are separated by high energy barriers

Define an Order Parameter

Extend  random walk ⇒ multi-dimensional parameter space



The 3-dim EA Spin Glass model:The 3-dim EA Spin Glass model:
A Two-dimensional random walkA Two-dimensional random walk

 Energy - order parameter histogram (L=6)

Perform a different random walk sequence for each
bond distribution



Distribution of States:  LDistribution of States:  L  xx  LL  xx  L EA Spin GlassL EA Spin Glass

 . . . For larger L, P(q,T) becomes even more complex!

L=6



Distribution of States:  LDistribution of States:  L  xx  LL  xx  L EA Spin GlassL EA Spin Glass

 . . . For larger L, P(q,T) becomes even more complex!

L=6 at low temperature



Distribution of States:  LDistribution of States:  L  xx  LL  xx  L EA Spin GlassL EA Spin Glass

 . . . For larger L, P(q,T) becomes even more complex!



Energy landscape Energy landscape –– 3d EA Spin Glass Model 3d EA Spin Glass Model



3d EA Spin Glass Model3d EA Spin Glass Model

Look for a phase transition  (Preliminary results)



3d EA Spin Glass Model3d EA Spin Glass Model

4th order Cumulant crossing  (Preliminary results)



 Wang-Landau sampling     Multicanonical sampling*
  L          S0             E0 S0     E0

     4 0.075+0.027     -1.734+0.006       0.0724+0.0047     -1.7403+0.0114
   6 0.061+0.025     -1.767+0.024       0.0489+0.0049     -1.7741+0.0074
   8        0.049+0.007     -1.779+0.016       0.0459+0.0030     -1.7822+0.0081
  12       0.053+0.001     -1.780+0.012       0.0491+0.0023     -1.7843+0.0030
  16       0.058+0.004     -1.776+0.004
  20       0.056+0.003     -1.774+0.004

GroundstateGroundstate Properties of the 3-d EA Properties of the 3-d EA
Spin GlassSpin Glass

Entropy and energy for the L×L×L simple cubic lattice

* Berg, Celik, and Hansmann (1993)



Variation on a ThemeVariation on a Theme
The EA (Edwards-Anderson) spin glass model in 3 dim:
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• Use parallel tempering
• Determine the correlation length
• Apply finite size scaling

Gaussian distribution

Katzgraber, Körner, and Young (2006)



The 3d Gaussian EA model:  Scaling ofThe 3d Gaussian EA model:  Scaling of
the correlation lengththe correlation length

Katzgraber, Körner, and Young (2006)β = 1/T



   

  Applications to Applications to ““ComplexComplex”” Systems Systems

 Spin glasses

 ““Lattice proteinsLattice proteins””

 “Real” proteins



A Biological A Biological ““Grand Challenge:Grand Challenge:
Protein FoldingProtein Folding

Real proteins are long polymers with side
chains of different types and complicated
interactions ⇒ simplify . . . but how much?



A A ““Biologically inspiredBiologically inspired”” problem problem
The HP model of protein folding

Introduction

Amino acid = “bead”

Hydrophobic (H)
Polar (P)

Protein sequence = “HPHPPHHPHPP…”

Protein conformation = “self-avoiding walk”
on a lattice, e.g. square (2D), cubic (3D)



The HP model of protein folding

Compact hydrophobic core /
polar (hydrophilic) shell

Amino acid = “bead”

Hydrophobic (H)
Polar (P)

Protein sequence = “HPHPPHHPHPP…”

Nearest-neighbor interactions
between non-covalently bound neighbors

EHH = -1, EHP = 0, EPP = 0   ⇒

Protein conformation = “self-avoiding walk”
on a lattice, e.g. square (2D), cubic (3D)

(Dill, Biochemistry 1985; Lau, Dill, Macromolecules 1989)

A A ““Biologically inspiredBiologically inspired”” problem problem

x

x

x



The importance of move sets

Wang-Landau sampling with pull moves

Local moves: Non-local moves:
End flip (1 bond)

Kink flip (2 bonds)

Crankshaft (3 bonds)

Pivot move

⇒ non-ergodic

⇒ ergodic

… but inefficient for dense
conformations ⇒ high
rejection probability



The HP model of protein folding
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Pull moves
2 3

1

3 4

1-bead move

2-bead move

1

Wang-Landau sampling with pull moves

(Lesh, Mitzenmacher, Whitesides, 2003)



The HP model of protein folding
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multi-bead move
(Completes internally)

Wang-Landau sampling with pull moves

Pull moves

multi-bead move
(Pulls until the end of the sequence)
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Wang-Landau sampling with pull moves

Pull moves

Ergodic (complete)

Reversible
⇒ n(A → B) = n(B → A)  (detailed balance!)

Good balance: local ↔ non-local
“Close-fitting”
⇒ High acceptance ratio

⇒ Ideal for Wang-Landau sampling

No time-consuming self-
avoidance test required

Extensible to n dimensions



Wang-Landau sampling of the HP model



Wang-Landau sampling of the HP Model*Wang-Landau sampling of the HP Model*

64mer in 2 dimensions (square lattice)

Ground state search
• Core directed chain-growth

(Beutler, Dill 1996)

• PERM
(Bastolla et al. 1998)

Density of states
• Multi-self-overlap ensemble (MSOE)

(Chikenji et al. 1999)

• Equi-energy sampling (EES)
(Kou et al. 2006)

Ground state (E =Ground state (E =  --  42)42)

Seq2D64

* with T. Wüst



A A ““Biologically inspiredBiologically inspired”” problem problem

The HP Model of Protein Folding

Benchmark sequences: A performance analysis

Seq2D64



The HP model of protein folding

Ground state (E = -53)Ground state (E = -53)

85mer in 2 dimensions (square lattice)

Seq2D85
11stst excited state (E = -52) excited state (E = -52)



Ground state search
• Fragment regrowth MC

(Zhang, Kou et al. 2007)

Density of states
• Multicanonical chain-growth (MCCG)

(Bachmann, Janke 2003 / 2004)

Ground state (E = -57)Ground state (E = -57)

Wang-Landau Sampling of the HP model

103mer in 3 dimensions (simple cubic lattice)
Seq3D103



The HP model of protein foldingSeq3D103: Comparison WLS ↔ MCCG

Density of states: -56 to 0 (without E = -57)

Wang-Landau sampling Multicanonical chain-growth

(Bachmann, Janke, J. Chem. Phys. 2004)5 runs
≈ 80hCPU / run



The HP model of protein foldingSeq3D103: Comparison WLS ↔ MCCG

Specific heat cV (T) / N

Wang-Landau sampling Multicanonical chain-growth

(Bachmann, Janke, J. Chem. Phys., 2004)



The HP model of protein folding

Ground state (E = -57)Ground state (E = -57)

103mer in 3 dimensions (cubic lattice)

11stst excited state (E = -56) excited state (E = -56)



   

  Applications to Applications to ““ComplexComplex”” Systems Systems

 Spin glasses

 “Lattice proteins”

 ““RealReal”” proteins proteins



The HP model of protein foldingA Real Biological Problem:  Structure ofA Real Biological Problem:  Structure of
Membrane ProteinsMembrane Proteins

• A few words of introduction and then
results for a few real problems



What is a protein?What is a protein?

 Primary structure:Primary structure:  Sequence of amino acid residues

EITLIIFGVMAGVIGTILLISYEITLIIFGVMAGVIGTILLISY



What is a protein?What is a protein?

 Secondary structureSecondary structure: H-bonds of backbone atoms

Alpha-helix Beta-sheet Loop



What is a protein?What is a protein?

helices & arrows balls & sticks

 Tertiary structure:Tertiary structure: 3-dim arrangement of atoms



What is a membrane protein?What is a membrane protein?

 Roles in biological process:
• Receptors;
• Channels, gates and pumps;
• Electric/chemical potential;
• Energy transduction

 > 50% new drug targets are
membrane proteins (MP).

Beta structureHelical structure



A A ““simplesimple”” problem:  problem: GlycophorinGlycophorin A (GPA) A (GPA)

 Function:
 Red blood cell membrane
 Carries sugar molecules

  Structure:  Structure:
 Single alpha-helix
 Symetrical dimer

EITLIIFGVMAGVIGTILLISYEITLIIFGVMAGVIGTILLISY



Folding process of GPAFolding process of GPA

 Single helix stable in the membrane
 Association of helices

(Popot, Engelman, Biochemistry, 1990)



Wang-Landau sampling of a GPA model*Wang-Landau sampling of a GPA model*

z

~15Å

 Energy :
– CHARMM19
– Lipid potential

 Starting structure: parallel
helices

 7 Monte Carlo Moves: protein,
helix, side-chain

Unified-atom modelUnified-atom model
Total: 368 atomsTotal: 368 atoms
2 helices (22 amino-acids)2 helices (22 amino-acids)

*with Claire Gervais, IOB



The HP model of protein folding
W-L sampling - Observables for GPAW-L sampling - Observables for GPA

z  helix-helix nonbond
energy (Einter)

 helix-helix distance (dhelix)

 RMSD of Cα atoms

dhelix

Einter



The HP model of protein folding
Specific heat for GPASpecific heat for GPA

~740K~300K



GPA:  RMSD and GPA:  RMSD and ddhelixhelix

~900K
RMSD
dhelix

~300K

RMSD < 2RMSD < 2ÅÅ
native statenative state



W-L sampling GPA ResultsW-L sampling GPA Results

Study residue energies, heat capacities, etc.:
 First native contacts appear at ~740K
 Final native contacts at ~300K

 Appearance of native contacts: Leucine → Glycine
→ Threonine

→ → Gradual convergence to the native stateGradual convergence to the native state

→ → Hierarchical acquisition of the native stateHierarchical acquisition of the native state



Another protein folding example:Another protein folding example:

Application of Wang-Landau sampling to
Docking of a seven-helix bundle:
Bacteriorhodopsin (1QHJ)



Docking of Docking of BacteriorhodopsinBacteriorhodopsin
                  ((ZhongZhong Chen, IOB, UGA) Chen, IOB, UGA)

77 helices, 174174 residues, 16191619  atoms
•• Rigid side-chainsRigid side-chains
•• VDW + lipid-helix potentialVDW + lipid-helix potential
•• One month CPU time at f=2.781One month CPU time at f=2.781

AB

B

A GEM structure with rmsd=3.0 Å was
obtained  in the self-assembly simulation of a 7-helix bundle



Overview and ConclusionOverview and Conclusion

There are models with complex energyThere are models with complex energy
landscapes that are now amenablelandscapes that are now amenable to to
study.  Examples include:study.  Examples include:

 Spin glasses
 “Lattice proteins”
 Real proteins



For more examplesFor more examples
of the application ofof the application of

MC in StatisticalMC in Statistical
PhysicsPhysics

(More coming in the(More coming in the
33rdrd edition) edition)

AppendixAppendix


