Leipzig Spring School 2008

Applications of Monte Carlo Simulations to Systems with Complex Energy Landscapes

D. P. Landau

- Introduction
- Review of Algorithms
- Applications
 - Spin glasses
 "Lattice proteins"
 "Real" proteins
- Conclusions

Review: Algorithms for "complex" systems

- Multicanonical sampling
- Parallel tempering
- Wang-Landau sampling

Reminder

The *Partition function* contains all thermodynamic information:

$$Z = \sum_{all \ states} e^{-\not{H}/k_B T}$$

Simple Monte Carlo approach: sample via a random walk in probability space

Single spin-flip sampling for the Ising model

Produce the n^{th} state from the m^{th} state ... relative probability is $P_n/P_m \rightarrow$ need only the *energy difference*, *i.e.* $\Delta E = (E_n - E_m)$ between the states

Any transition rate that satisfies *detailed balance* is acceptable, usually the Metropolis form (*Metropolis et al, 1953*).

$$W(m \rightarrow n) = \tau_o^{-1} \exp(-\Delta E/k_B T), \quad \Delta E > 0$$

= τ_o^{-1} , $\Delta E < 0$

where τ_o is the time required to attempt a spin-flip.

MC Problems and Challenges

Statics: Monte Carlo methods are valuable, but near T_c \Rightarrow critical slowing down for 2nd order transitions \Rightarrow metastability for 1st order transitions and for systems with complex energy landscapes

:. Try to reduce characteristic time scales or circumvent them

"Dynamics": stochastic vs deterministic

Review: Wang-Landau sampling

Random Walk in Energy Space with a Flat Histogram

$$Z = \sum_{\substack{all \\ states}} e^{-\frac{2}{B}/k_B T} \equiv \sum_{\substack{all \\ energies}} g(E)e^{-\frac{2}{B}/k_B T}$$

Estimate the *density of states* g(E) directly by performing a random walk in energy space:

1. Set g(E)=1; choose a modification factor (e.g. $f_0=e^1$)

- 2. Randomly flip a spin with probability: $p(E_1 \rightarrow E_2) = \min\left(\frac{g(E_1)}{g(E_2)}, 1\right)$
- 3. Set $g(E_i) \rightarrow g(E_i)^* f$
- 4. Continue until the histogram is "flat"; decrease f, e.g. $f_{!+1}=f^{1/2}$
- 5. Repeat steps 2 4 until $f = f_{min} \sim exp(10^{-8})$
- 6. Calculate properties using final density of states g(E)

Density of States for the 2-dim Ising model

Compare exact results with data from random walks in energy space: *L*×*L lattices with periodic boundaries*

 ε = relative error (*exact solution is known for L* \leq 64)

Free Energy of the 2-dim Ising Model

 ϵ = relative error

Wang-Landau sampling at a 1st Order Transition

The q=10 Potts model in 2-dim

At T_c coexisting states are separated by an energy barrier

Applications to "Complex" Systems

Applications to "Complex" Systems

Spin glasses
"Lattice proteins"
"Real" proteins

A Magnetic System with Complex "Order"

The EA (Edwards-Anderson) spin glass model in 3 dim:

At T_c (if it exists) a spin glass state forms \Rightarrow get a "rough" energy landscape where multiple minima are separated by high energy barriers

Define an Order Parameter

First choose a finite lattice groundstate , then $q = \frac{1}{n} \sum_{\alpha} < \frac{1}{N} \sum_{i} \sigma_{i}^{\alpha} \sigma_{i} > \quad \text{"EA order parameter"}$ \uparrow number of bond configurations

Extend random walk \Rightarrow multi-dimensional parameter space

The 3-dim EA Spin Glass model: A Two-dimensional random walk

• Energy - order parameter histogram (L=6)

Perform a different random walk sequence for each bond distribution

Distribution of States: LxLxL EA Spin Glass

L=6

... For larger L, P(q,T) becomes even more complex!

Distribution of States: LxLxL EA Spin Glass

L=6 at low temperature

... For larger L, P(q,T) becomes even more complex!

Distribution of States: LxLxL EA Spin Glass

... For larger L, P(q,T) becomes even more complex!

Energy landscape – 3d EA Spin Glass Model

3d EA Spin Glass Model

Look for a phase transition (Preliminary results)

3d EA Spin Glass Model

4th order Cumulant crossing (Preliminary results)

Groundstate Properties of the 3-d EA **Spin Glass**

Entropy and energy for the *L*×*L*×*L* simple cubic lattice

Wang-Landau sampling Multicanonical sampling*

L	S_0	E_0	S_0	E_{0}
4	0.075 <u>+</u> 0.027	-1.734 <u>+</u> 0.006	0.0724 <u>+</u> 0.0047	-1.7403 <u>+</u> 0.0114
6	0.061 <u>+</u> 0.025	-1.767 <u>+</u> 0.024	0.0489 <u>+</u> 0.0049	-1.7741 <u>+</u> 0.0074
8	0.049 <u>+</u> 0.007	-1.779 <u>+</u> 0.016	0.0459 <u>+</u> 0.0030	-1.7822 <u>+</u> 0.0081
12	0.053 <u>+</u> 0.001	-1.780 <u>+</u> 0.012	0.0491 <u>+</u> 0.0023	-1.7843 <u>+</u> 0.0030
16	0.058 <u>+</u> 0.004	-1.776 <u>+</u> 0.004		
20	0.056 <u>+</u> 0.003	-1.774 <u>+</u> 0.004		

* Berg, Celik, and Hansmann (1993)

Variation on a Theme

The EA (Edwards-Anderson) spin glass model in 3 dim:

- Use parallel tempering
- Determine the correlation length
- Apply finite size scaling

Katzgraber, Körner, and Young (2006)

The 3d Gaussian EA model: Scaling of the correlation length

 $\beta = 1/T$ Katzgraber, Körner, and Young (2006)

Applications to "Complex" Systems

Spin glasses
"Lattice proteins"
"Real" proteins

A Biological "Grand Challenge: Protein Folding

Real proteins are long polymers with side chains of different types and complicated interactions \Rightarrow simplify . . . but how much?

A "Biologically inspired" problem The HP model of protein folding

Amino acid = "bead"

Hydrophobic (H)Polar (P)

Protein sequence = "HPHPPHHPHPP..."

Protein conformation = "self-avoiding walk" on a lattice, e.g. square (2D), cubic (3D)

A "Biologically inspired" problem The HP model of protein folding

Amino acid = "bead"

Hydrophobic (H)Polar (P)

Protein sequence = "HPHPPHHPHPP..."

Protein conformation = "self-avoiding walk" on a lattice, e.g. square (2D), cubic (3D)

Nearest-neighbor interactions between non-covalently bound neighbors

 $E_{HH} = -1, E_{HP} = 0, E_{PP} = 0 \implies$

Compact hydrophobic core / polar (hydrophilic) shell

(Dill, Biochemistry 1985; Lau, Dill, Macromolecules 1989)

Wang-Landau sampling with pull moves

(Lesh, Mitzenmacher, Whitesides, 2003)

Wang-Landau sampling with pull moves

Pull moves

multi-bead move (Completes internally) multi-bead move (Pulls until the end of the sequence)

Pull moves

Extensible to n dimensions

Ergodic (complete)

Reversible $\Rightarrow n(A \rightarrow B) = n(B \rightarrow A)$ (detailed balance!)

No time-consuming selfavoidance test required

Good balance: local ↔ non-local "Close-fitting" ⇒ High acceptance ratio

\Rightarrow Ideal for Wang-Landau sampling

Wang-Landau sampling of the HP model

Wang-Landau sampling of the HP Model* 64mer in 2 dimensions (square lattice) Seq2D64

Ground state search

- Core directed chain-growth (Beutler, Dill 1996)
- PERM (Bastolla et al. 1998)

Density of states

- Multi-self-overlap ensemble (MSOE) (Chikenji et al. 1999)
- Equi-energy sampling (EES) (Kou et al. 2006)

Ground state (E = -42)

* with T. Wüst

A "Biologically inspired" problem

The HP Model of Protein Folding

Seq2D64

85mer in 2 dimensions (square lattice)

Seq2D85

Ground state (E = -53)

 1^{st} excited state (E = -52)

Wang-Landau Sampling of the HP model 103mer in 3 dimensions (simple cubic lattice) Seq3D103

Ground state search

• Fragment regrowth MC (Zhang, Kou et al. 2007)

Ground state (E = -57)

Density of states

• Multicanonical chain-growth (MCCG) (Bachmann, Janke 2003 / 2004)

Seq3D103: Comparison WLS ↔ MCCG

Density of states: -56 to 0 (without E = -57)

Wang-Landau sampling

Multicanonical chain-growth

70

 $\begin{array}{c}
 60 \\
 50 \\
 10g_{10} g(E) \\
 40 \\
 30 \\
 30 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\
 40 \\$

5 runs ≈ 80h_{CPU} / run

(Bachmann, Janke, J. Chem. Phys. 2004)

Seq3D103: Comparison WLS ↔ MCCG

Specific heat $c_V(T) / N$

Wang-Landau sampling

Multicanonical chain-growth

(Bachmann, Janke, J. Chem. Phys., 2004)

103mer in 3 dimensions (cubic lattice)

Ground state (E = -57)

Applications to "Complex" Systems

Spin glasses
 "Lattice proteins"

□ "Real" proteins

A Real Biological Problem: Structure of Membrane Proteins

 A few words of introduction and then results for a few real problems

What is a protein?

Primary structure: Sequence of amino acid residues

EITLIFGVMAGVIGTILLISY

What is a protein?

Secondary structure: H-bonds of backbone atoms

What is a protein?

Tertiary structure: 3-dim arrangement of atoms

balls & sticks

helices & arrows

What is a membrane protein?

Roles in biological process:

- Receptors;
- Channels, gates and pumps;
- Electric/chemical potential;
- Energy transduction

> 50% new drug targets are membrane proteins (MP).

A "simple" problem: Glycophorin A (GPA)

- Function:
- Red blood cell membrane
- Carries sugar molecules

- Structure:
- Single alpha-helix
- Symetrical dimer

EITLIIFGVMAGVIGTILLISY

Folding process of GPA

Single helix stable in the membraneAssociation of helices

(Popot, Engelman, Biochemistry, 1990)

Wang-Landau sampling of a GPA model*

>Unified-atom model
>Total: 368 atoms
>2 helices (22 amino-acids)

Energy :
 CHARMM19

- Lipid potential
- Starting structure: parallel helices
- 7 Monte Carlo Moves: protein, helix, side-chain

*with Claire Gervais, IOB

W-L sampling - Observables for GPA

- helix-helix nonbond energy (E_{inter})
- helix-helix distance (d_{helix})

• RMSD of C_{α} atoms

Specific heat for GPA

GPA: RMSD and d_{helix}

W-L sampling GPA Results

Study residue energies, heat capacities, etc.:
First native contacts appear at ~740K

Final native contacts at ~300K

 \rightarrow Gradual convergence to the native state

- Appearance of native contacts: Leucine → Glycine
 → Threonine
 - → Hierarchical acquisition of the native state

Another protein folding example:

Application of Wang-Landau sampling to Docking of a seven-helix bundle: Bacteriorhodopsin (1QHJ)

Docking of Bacteriorhodopsin

7 helices, 174 residues, 1619 atoms

- Rigid side-chains
- VDW + lipid-helix potential
- One month CPU time at f=2.781

(Zhong Chen, IOB, UGA)

A GEM structure with rmsd=3.0 Å was obtained in the self-assembly simulation of a 7-helix bundle

Overview and Conclusion

There are models with complex energy landscapes that are now amenable to study. Examples include:

- Spin glasses
- "Lattice proteins"
- Real proteins

Appendix

For more examples of the application of MC in Statistical Physics (More coming in the 3rd edition)

