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Review: Algorithms for “complex” systems

* Multicanonical sampling
 Parallel tempering

 Wang-Landau sampling




Simulation

Experiment —=




Reminder

The Partition function contains all
thermodynamic information:

7 _ Ee—’ﬂ"/kBT

all states

Simple Monte Carlo approach: sample via a
random walk in probability space




Single spin-flip sampling for the Ising model

Produce the nt" state from the m' state ... relative
probability is P,/P,, — need only the energy difference,
ie. AE=(E -E, ) between the states

Any transition rate that satisfies detailed balance is
acceptable, usually the Metropolis form (Metropolis et al,
1953).

Wm—n) = 1 'exp (-AE/kyT), AE> 0
= 71 , AE<O0

where 7 , 1s the time required to attempt a spin-flip.




MC Problems and Challenges

Statics: Monte Carlo methods are valuable, but near T,

= critical slowing down for 2" order transitions

= metastability for 1% order transitions and for
systems with complex energy landscapes

. Try to reduce characteristic time scales or circumvent
them

“Dynamics”: stochastic vs deterministic




Review: Wang-Landau sampling
Random Walk in Energy Space with a Flat Histogram

. Z e—?‘/kBT _ 2 o(Eye kT

states energies

Estimate the density of states g(E) directly by performing
a random walk in energy space:

1. Set g(E)=1; choose a modification factor (e.g. f,=e')

2. Randomly flip a spin with probability: JIeaE R min( g(£) ,1)

g(E,)
3. Set g(E) —g(E)*f

4. Continue until the histogram is “flat”; decreasef, e.g. f,.,=f
5. Repeat steps 2 - 4 until f=f, .~ exp(10-°)
6. Calculate properties using final density of states g(E)




Density of States for the 2-dim Ising model

Compare exact results with data from random walks in
energy space: LxL lattices with periodic boundaries

32x32

simulation
- @xact

e = relative error ( exact solution is known for L= 64 )




Free Energy of the 2-dim Ising Model

256x256 Ising model
simulation

€ = relative error




Wang-Landau sampling at a 1st Order Transition

The g=10 Potts model in 2-dim
At T, coexisting states are separated by an energy barrier




Applications to
“Complex” Systems




Applications to "Complex” Systems

 Spin glasses
 “Lattice proteins”

d “Real” proteins




A Magnetic System with Complex “"Order”
The EA (Edwards-Anderson) spin glass model in 3 dim:

q_ X\ ] ~ ~

At T, (if it exists) a spin glass state forms =
get a “rough” energy landscape where multiple minima
are separated by high energy barriers

Define an Order Parameter

First choose a finite lattice groundstate , then

g= ,112 < ]{,E o’c,> "EA order parameter"

t

number of bond configurations

Extend random walk = multi-dimensional parameter space




The 3-dim EA Spin Glass model:
A Two-dimensional random walk

e Energy - order parameter histogram (L=6)

H(E.q)
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Perform a different random walk sequence for each
bond distribution




Distribution of States: LxLxL EA Spin Glass
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... Forlarger L, P(q,T) becomes even more complex!




Distribution of States: LxLxL EA Spin Glass

L=6 at low temperature

... Forlarger L, P(q,T) becomes even more complex!




Distribution of States: LxLxL EA Spin Glass

... Forlarger L, P(q,T) becomes even more complex!




Energy landscape — 3d EA Spin Glass Model




3d EA Spin Glass Model

Look for a phase transition (Preliminary results)




3d EA Spin Glass Model

4t order Cumulant crossing (Preliminary results)




Groundstate Properties of the 3-d EA
Spin Glass

Entropy and energy for the LxL xL simple cubic lattice

Wang-Landau sampling Multicanonical sampling®
SO EO SO EO
0.075+0.027 -1.734+0.006 0.0724+0.0047 -1.7403+0.0114
0.061+0.025 -1.767+0.024 0.0489+0.0049 -1.7741+0.0074
0.049+0.007 -1.779+0.016 0.0459+0.0030 -1.7822+0.0081
0.053+0.001 -1.780+0.012 0.0491+0.0023 -1.7843+0.0030

0.058+0.004 -1.776+0.004
0.056+0.003 -1.774+0.004

* Berg, Celik, and Hansmann (1993)




Variation on a Theme
The EA (Edwards-Anderson) spin glass model in 3 dim:

b

T ~

Gaussian distribution

» Use parallel tempering
» Determine the correlation length
* Apply finite size scaling

Katzgraber, Korner, and Young (2006)




The 3d Gaussian EA model: Scaling of
the correlation length

Gaussian

z

Katzgraber, Korner, and Young (2006)




Applications to "Complex” Systems

d Spin glasses
U “[Lattice proteins:

d “Real” proteins




A Biological “"Grand Challenge:
Protein Folding

Real proteins are long polymers with side

chains of different types and complicated
interactions = simplify . . . but how much?




A "Biologically inspired” problem
The HP model of protein folding

?“MH

144

Amino acid = “bead”
Hydrophobic (H)
® Polar (P)

Protein sequence = “HPHPPHHPHPP...”

Protein conformation = “self-avoiding walk”
on a lattice, e.g. square (2D), cubic (3D)




A "Biologically inspired” problem
The HP model of protein folding

Amino acid = “bead”

! ‘ Hydrophobic (H)
* H ® Polar (P)
Protein sequence = “HPHPPHHPHPP...”

Protein conformation = “self-avoiding walk”

* on a lattice, e.g. square (2D), cubic (3D)
I: —‘ Nearest-neighbor interactions

between non-covalently bound neighbors

=1 E..=0 E..=0 = Compacthydrophobic core /
» AP PP polar (hydrophilic) shell

(Dill, Biochemistry 1985, Lau, Dill, Macromolecules 1989)




Wang-Landau sampling with pull moves

The importance of move sets

Local moves: Non-local moves:

End flip (1 bond) Pivot move

= ergédic

... but inefficient for dense
conformations = high

= non-ergodic rejection probability




Wang-Landau sampling with pull moves

Pull moves

1-bead move

2-bead move

(Lesh, Mitzenmacher, Whitesides, 2003)




Wang-Landau sampling with pull moves

Pull moves

-]

multi-bead move multi-bead move
(Completes internally) (Pulls until the end of the sequence)




Pull moves

Wang-Landau sampling with pull moves

Extensible to n dimensions
Ergodic (complete)

Reversible
= n(A — B) = n(B — A) (detailed balance!)

No time-consuming self-
avoidance test required

Good balance: local <= non-local
“Close-fitting”
= High acceptance ratio

=> |deal for Wang-Landau sampling




Wang-Landau sampling of the HP model




Wang-Landau sampling of the HP Model*

64mer in 2 dimensions (square lattice)
Seq2D64

Ground state search

 Core directed chain-growth Ground state (E = -42)
(Beutler, Dill 1996)

« PERM
(Bastolla et al. 1998)

Density of states

» Multi-self-overlap ensemble (MSOE)
(Chikenji et al. 1999)

* Equi-energy sampling (EES)
(Kou et al. 2006)

*with T. Wiist




A "Biologically inspired” problem

The HP Model of Protein Folding Seq2D64

10

— Wang-Landau sampling
— Equi-energy sampling
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Wang-Landau Sampling of the HP model

103mer in 3 dimensions (simple cubic lattice)

Seq3D103

Ground state search

* Fragment regrowth MC
(Zhang, Kou et al. 2007)

Density of states

« Multicanonical chain-growth (MCCG)
(Bachmann, Janke 2003 / 2004)

Ground state (E = -57)




Seq3D103: Comparison WLS <= MCCG

Density of states: -56 to 0 (without E = -57)

Wang-Landau sampling Multicanonical chain-growth
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Seq3D103: Comparison WLS <= MCCG
Specific heat c,, (T) / N

Wang-Landau sampling Multicanonical chain-growth

-
|

=z
~
>
3
—
(3]
0]
<
2
=
3]
()
Q.
w

o
~
|

; . ‘ — 71— T O 01 02 03 04 05 06 07 08 09
03 04 05 06 07 08 09
Temperature T

(Bachmann, Janke, J. Chem. Phys., 2004)




103mer in 3 dimensions (cubic lattice)

Ground state (E = -57) 15t excited state (E = -56)




Applications to "Complex” Systems

d Spin glasses
 “Lattice proteins”

Ul ‘Real” proteins




A Real Biological Problem: Structure of
Membrane Proteins

A few words of introduction and then
results for a few real problems




What is a protein?

Primary structure: Sequence of amino acid residues

EITLITFGVMAGVIGTILLISY




What is a protein?

Secondary structure: H-bonds of backbone atoms

Alpha-helix Beta-sheet




What is a protein?

Tertiary structure: 3-dim arrangement of atoms

balls & sticks helices & arrows




What is a membrane protein?

2 Roles in biological process:
Receptors;
Channels, gates and pumps;
Electric/chemical potential;
Energy transduction

2 > 50% new drug targets are
membrane proteins (MP).

EXTRACELLULAR

Glycoprotein
/ Glycolipid FLUID

Cholqslerol

kel " ovropuasw. Helical structure Beta structure

Protein




A “simple” problem: Glycophorin A (GPA)

™

e Function:
¢ Red blood cell membrane
e Carries sugar molecules

Structure:
e Single alpha-helix
e Symetrical dimer

EITLITFGVMAGVIGTILLISY




Folding process of GPA

e Single helix stable in the membrane
e Association of helices

(Popot, Engelman, Biochemistry, 1990)




Wang-Landau sampling of a GPA model*®

» Unified-atom model
> Total: 368 atoms
»2 helices (22 amino-acids)

e Energy:
— CHARMM19
— Lipid potential

e Starting structure: parallel
helices

e 7/ Monte Carlo Moves: protein,
helix, side-chain

*with Claire Gervais, [OB




W-L sampling - Observables for GPA

e helix-helix nonbond
energy (Einter)

e helix-helix distance (d, )

e RMSD of C, atoms




Specific heat for GPA
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RMSD and d, ;,
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W-L sampling GPA Results

Study residue energies, heat capacities, etc.:
e First native contacts appear at ~740K
e Final native contacts at ~300K

— Gradual convergence to the native state

e Appearance of native contacts: Leucine — Glycine
— Threonine

— Hierarchical acquisition of the native state




Another protein folding example:

Application of Wang-Landau sampling to
Docking of a seven-helix bundle:
Bacteriorhodopsin (1QHJ)




Docking of Bacteriorhodopsin

(Ziong Clicn, 105, UGA)
7/ helices, 174 residues, 1619 atoms

[Rigidiside-chains
VDWW +Hipid-helix potential
One month CPU time at i=2.781

A GEM structure with rmsd=3.0 A was
obtained in the self-assembly simulation of a 7-helix bundle




Overview and Conclusion

There are models with complex energy
landscapes that are now amenable to
study. Examples include:

e Spin glasses

e “Lattice proteins”

e Real proteins




Appendix

For more examples

SECOND EDITION

of the application of
MC in Statistical
Physics
(More coming In the
39 edition)
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A Guide to
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