New insights from one-dimensional spin glasses

http://katzgraber.org/stuff/leipzig
New insights from one-dimensional spin glasses

Helmut G. Katzgraber

http://katzgraber.org
New insights from one-dimensional spin glasses

Helmut G. Katzgraber

http://katzgraber.org
Outline and Motivation

- Introduction to spin glasses (disordered magnets)
 - What are spin glasses?
 - Why are they hard to study?

- How well does the mean-field solution work?
 - Model: 1D chain
 - Do spin glasses order in a field?
 - Ultrametricity in spin glasses?

- Applications to other problems and algorithm benchmarking.

Outline and Motivation

• Introduction to spin glasses (disordered magnets)
 • What are spin glasses?
 • Why are they hard to study?

• How well does the mean-field solution work?
 • Model: 1D chain
 • Do spin glasses order in a field?
 • Ultrametricity in spin glasses?

• Applications to other problems and algorithm benchmarking.

Outline and Motivation

- Introduction to spin glasses (disordered magnets)
 - What are spin glasses?
 - Why are they hard to study?
- How well does the mean-field solution work?
 - Model: 1D chain
 - Do spin glasses order in a field?
 - Ultrametricity in spin glasses?
- Applications to other problems and algorithm benchmarking.
Brief introduction to spin glasses
Building a spin glass from the Ising model

- **Hamiltonian:**
 \[
 \mathcal{H} = - \sum_{\langle ij \rangle} J_{ij} S_i S_j - H \sum_i S_i
 \]
 \[
 J_{ij} = 1 \quad \forall i, j \quad i \neq j
 \]

- **Order parameter:**
 \[
 m = \frac{1}{N} \sum_i S_i \quad \text{(magnetization)}
 \]

- **Some properties:**
 - Phase transition to an ordered state.
 - According to Harris criterion, if \(d\nu > 2 \) the system changes universality class when local disorder is added.
 - For the Ising model \(d\nu \leq 2 \) in 2D and 3D.
What is a spin glass?

- **Prototype model**: Edwards-Anderson Ising spin glass

\[\mathcal{H} = -\sum_{ij} J_{ij} S_i S_j - h \sum S_i \quad J_{ij} \text{ random} \]

- **Properties**:
 - Phase transition into a glassy phase
 - Complex energy landscape
 - Some hallmarks: aging, memory, hysteresis, ...
 - Complex optimization problem
 - Very hard to treat analytically beyond mean-field.
What is a spin glass?

- **Prototype model:** Edwards-Anderson Ising spin glass

\[\mathcal{H} = - \sum_{ij} J_{ij} S_i S_j - h \sum S_i \]

- **Properties:**
 - Phase transition into a glassy phase
 - Complex energy landscape
 - Some hallmarks: aging, memory, hysteresis, ...
 - Complex optimization problem
 - Very hard to treat analytically beyond mean-field.
What is a spin glass?

- **Prototype model:** Edwards-Anderson Ising spin glass

\[\mathcal{H} = -\sum_{ij} J_{ij} S_i S_j - h \sum S_i \quad J_{ij} \text{ random} \]

- **Properties:**
 - Phase transition into a glassy phase
 - Complex energy landscape
 - Some hallmarks: aging, memory, hysteresis, ...
 - Complex optimization problem
 - Very hard to treat analytically beyond mean-field.

Many applications to other problems!
Applications beyond disordered magnets

- The models can describe many systems with competing interactions on a graph:
 - **Computer chips:**

 \[S_i \] component

 \[J_{ij} \] wiring diagram
 - **Economic markets:**

 \[S_i \] agent inclination

 \[J_{ij} \] portfolio interactions
 - **Other applications:**

 - Quantum error correction in topological quantum computing (current research).
 - Optimization problems (e.g., number partitioning problem).
 - Neural networks, …
Early experimental observations:
- 1970: Canella and Mydosh see a cusp in the susceptibility of Fe/Au alloys (disorder). Material with RKKY interactions (frustration):

\[
J_{ij} \sim \frac{\cos(2k_F R_{ij})}{R_{ij}^3}
\]

Early theoretical descriptions:
 \[
 \mathcal{H} = - \sum_{\langle ij \rangle} J_{ij} S_i S_j \quad \text{mean-field approx.} \quad \sum_{\langle ij \rangle} \to \sum_{i,j}
 \]
- 1975: Mean-field Sherrington-Kirkpatrick model.
- 1979: Parisi solution of the mean-field model (RSB).
- 1986: Fisher, Huse, Bray, Moore introduce the phenomenological droplet picture (DP) for short-range systems.
How can we study these systems?

- **Analytically:** only the mean-field solution (RSB) or qualitative descriptions (DP).

- **Numerically:** Optimal problem for large computers
 - Challenges:
 - Exponential number of competing states (usually NP hard).
 - Relaxation times diverge exponentially with the system size.
 - Extra overhead due to disorder averaging.
 - Usually small systems only.
 - Solution:
 - Use large computer clusters.
 - Use better algorithms.
 - Use better models.
 - Average project requires 300’000 CPUh (4 months on 10^2 CPUs).
How can we study these systems?

- **Analytically:** only the mean-field solution (RSB) or qualitative descriptions (DP).

- **Numerically:** Optimal problem for large computers
 - Challenges:
 - Exponential number of competing states (usually NP hard).
 - Relaxation times diverge exponentially with the system size.
 - Extra overhead due to disorder averaging.
 - Usually small systems only.
 - Solution:
 - Use large computer clusters.
 - Use better algorithms.
 - Use better models.
 - Average project requires 300’000 CPUh (4 months on 10^2 CPUs).
How can we study these systems?

- **Analytically:** only the mean-field solution (RSB) or qualitative descriptions (DP).

- **Numerically:** Optimal problem for large computers
 - **Challenges:**
 - Exponential number of competing states (usually NP hard).
 - Relaxation times diverge exponentially with the system size.
 - Extra overhead due to disorder averaging.
 - Usually small systems only.
 - **Solution:**
 - Use large computer clusters.
 - Use better algorithms.
 - Use better models.
 - Average project requires 300’000 CPUh (4 months on 10^2 CPUs).
Some open problems... many challenges

Some open issues:
- Chaos in spin glasses
- Nature of the low-temperature spin-glass phase
- Properties of vector spin glasses, ...

And many more:
- ultrametricity
- universality
- memory effect
Some open problems... many challenges

- Some open issues:
 - Chaos in spin glasses
 - Nature of the low-temperature spin-glass phase
 - Properties of vector spin glasses, ...

- And many more:
 - ultrametricity
 - universality
 - memory effect
Some open problems... many challenges

- Some open issues:
 - Chaos in spin glasses
 - Nature of the low-temperature spin-glass phase
 - Properties of vector spin glasses, …

And many more:
- Which properties of the mean-field solution carry over to short-range systems?
Models: The 1D Ising chain
Traditional model: Edwards-Anderson

- **Hamiltonian:**
 \[H = -\sum_{\langle i,j \rangle} J_{ij} S_i S_j \quad S_i \in \{\pm 1\} \]

- **Details about the model:**
 - Nearest-neighbor interactions.
 - Simulations usually done with periodic boundary conditions.
 - Transition temperatures: \(T_c = 0 \) (2D), \(T_c \sim 1 \) (3D), \(T_c \sim 2 \) (4D).
 - Most studied spin-glass model to date.

- **Disadvantages of the model:**
 - Cannot be solved analytically.
 - In high space dimensions only small systems can be simulated \((D \geq 5\) almost impossible).
Better: The one-dimensional Ising chain

\[\mathcal{H} = - \sum_{ij} J_{ij} S_i S_j - \sum_i h_i S_i \]

- **Properties:**
 - The sum ranges over all spins
 - Power-law random interactions

\[J_{ij} \sim \frac{\varepsilon_{ij}}{r_{ij}^{\sigma}} \]

- **Advantages:**
 - Large range of sizes.
 - Tuning the power-law exponent changes the universality class.

Fisher & Huse, PRB (88)
Kotliar et al., PRB (83)
Better: The one-dimensional Ising chain

\[\mathcal{H} = -\sum_{ij} J_{ij} S_i S_j - \sum_i h_i S_i \]

- Properties:
 - The sum ranges over all spins
 - Power-law random interactions
 \[J_{ij} \sim \frac{\varepsilon_{ij}}{r_{ij}^{\sigma}} \]

- Advantages:
 - Large range of sizes.
 - Tuning the power-law exponent changes the universality class.
Better: The one-dimensional Ising chain

\[\mathcal{H} = -\sum_{ij} J_{ij} S_i S_j - \sum_i h_i S_i \]

- **Properties:**
 - The sum ranges over all spins
 - Power-law random interactions

 \[J_{ij} \sim \frac{\varepsilon_{ij}}{r_{ij}^{\sigma}} \]

- **Advantages:**
 - Large range of sizes.
 - Tuning the power-law exponent changes the universality class.

- \(T_c > 0 \)
- \(\sigma_{c(d)} \)
- \(d = 2\sigma \)
- \(d = \sigma \)

Fisher & Huse, PRB (88)
Kotliar et al., PRB (83)
Tuning the universality class

- Short-range spin glasses:
 - Upper critical dimension $d_u = 6$ (for $d \geq d_u$ MF behavior)
 - Lower critical dimension $d_l = 2$ (for $d \leq d_l$ $T_c = 0$)

- Phase diagram of the 1D chain:

\[d_{\text{eff}} \approx \frac{2}{2\sigma - 1} \]

Kotliar et al., PRB (83)
Tuning the universality class

- Short-range spin glasses:
 - Upper critical dimension $d_u = 6$ (for $d \geq d_u$ MF behavior)
 - Lower critical dimension $d_l = 2$ (for $d \leq d_l$ $T_c = 0$)

$$d_{\text{eff}} \approx \frac{2}{2\sigma - 1}$$

- Phase diagram of the 1D chain:

<table>
<thead>
<tr>
<th>σ</th>
<th>0</th>
<th>1/2</th>
<th>2/3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-MF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$T_c > 0$ $T_c = 0$

$d_{\text{eff}} = \infty$ 6 2

expect MF predictions to work

Kotliar et al., PRB (83)
Algorithms
Reminder: Exchange Monte Carlo

- Efficient algorithm to treat spin glasses at finite T.
- Idea:
 - Simulate M copies of the system at different temperatures with $T_{\text{max}} > T_c$ (typically $T_{\text{max}} \sim 2T_c^{\text{MF}}$).
 - Allow swapping of neighboring temperatures: easy crossing of barriers.

- Extremely fast equilibration at low temperatures.
- For the following applications we use this algorithm...

Hukushima & Nemoto (96)
Do spin glasses order in a field?
Spin-glass state in a field?

- Two possible scenarios:
 - Replica Symmetry Breaking (RSB): existence of an instability line [Almeida & Thouless (78)] for the mean-field SK model.
 - Droplet picture (DP): there is no spin-glass state in a field.

Why should we care?

- The question lies at the core of theoretical descriptions.
- Field terms are ubiquitous in applications/experiments.
- Experimentally, numerically, and theoretically controversial.
Spin-glass state in a field?

- Two possible scenarios:
 - Replica Symmetry Breaking (RSB): existence of an instability line [Almeida & Thouless (78)] for the mean-field SK model.
 - Droplet picture (DP): there is no spin-glass state in a field.

Why should we care?

- The question lies at the core of theoretical descriptions.
- Field terms are ubiquitous in applications/experiments.
- Experimentally, numerically, and theoretically controversial.
Spin-glass state in a field?

- **Two possible scenarios:**
 - Replica Symmetry Breaking (RSB): existence of an instability line [Almeida & Thouless (78)] for the mean-field SK model.
 - Droplet picture (DP): there is no spin-glass state in a field.

- **Why should we care?**
 - The question lies at the core of theoretical descriptions.
 - Field terms are ubiquitous in applications/experiments.
 - Experimentally, numerically, and theoretically controversial.
Probing criticality: correlation length

• Use the finite-size correlation length to probe criticality in spin-glass systems:

 • Wave-vector-dependent connected spin-glass susceptibility:
 \[\chi_{SG}(k) = \frac{1}{N} \sum_{ij} \left[\left(\langle S_i S_j \rangle_T - \langle S_i \rangle_T \langle S_j \rangle_T \right)^2 \right] \text{dis} \]
 \[e^{ik(R_i - R_j)} \]

 • Perform an Ornstein-Zernicke approximation:
 \[\frac{\chi_{SG}(k)}{\chi_{SG}(0)}^{-1} = 1 + \xi_L^2 k^2 + O[(\xi_L k)^4] \]

 • Compensate for finite-size effects and periodic boundaries:
 \[\xi_L = \frac{1}{2 \sin(k_{\text{min}}/2)} \left[\frac{\chi_{SG}(0)}{\chi_{SG}(k_{\text{min}})} - 1 \right]^{1/2} \]

 • Finite-size scaling:
 \[\frac{\xi_L}{L} = \tilde{X} \left(L^{1/\nu} [T - T_c] \right) \]

 • Better than Binder ratio.
Probing criticality: correlation length

- Use the finite-size correlation length to probe criticality in spin-glass systems:
 - Wave-vector-dependent connected spin-glass susceptibility:
 \[\chi_{SG}(k) = \frac{1}{N} \sum_{ij} \left[(\langle S_i S_j \rangle_T - \langle S_i \rangle_T \langle S_j \rangle_T)^2 \right]_{\text{dis}} e^{i k (R_i - R_j)} \]
 - Perform an Ornstein-Zernicke approximation:
 \[[\chi_{SG}(k)/\chi_{SG}(0)]^{-1} = 1 + \xi_L^2 k^2 + O[(\xi_L k)^4] \]
 - Compensate for finite-size effects and periodic boundaries:
 \[\xi_L = \frac{1}{2 \sin(k_{\text{min}}/2)} \left[\frac{\chi_{SG}(0)}{\chi_{SG}(k_{\text{min}})} - 1 \right]^{1/2} \]
 - Finite-size scaling:
 \[\frac{\xi_L}{L} = \tilde{X} \left(L^{1/\nu} [T - T_c] \right) \]
 - Better than Binder ratio.

Ballesteros et al. PRB (00)
Probing criticality: correlation length

Ballesteros et al. PRB (00)

- Use the finite-size correlation length to probe criticality in spin-glass systems:

 - Wave-vector-dependent connected spin-glass susceptibility:
 \[
 \chi_{SG}(k) = \frac{1}{N} \sum_{ij} \left[(\langle S_i S_j \rangle_T - \langle S_i \rangle_T \langle S_j \rangle_T)^2 \right]_{\text{dis}} e^{i k (R_i - R_j)}
 \]

 - Perform an Ornstein-Zernicke approximation:
 \[
 [\chi_{SG}(k)/\chi_{SG}(0)]^{-1} = 1 + \xi_L^2 k^2 + \mathcal{O}[(\xi_L k)^4]
 \]

 - Compensate for finite-size effects and periodic boundaries:
 \[
 \xi_L = \frac{1}{2 \sin(k_{\text{min}}/2)} \left[\frac{\chi_{SG}(0)}{\chi_{SG}(k_{\text{min}})} - 1 \right]^{1/2}
 \]

- Finite-size scaling:
 \[
 \frac{\xi_L}{L} = \tilde{X} \left(L^{1/\nu} [T - T_c] \right)
 \]

- Better than Binder ratio.
How well does this work for zero field?

- Study the 3D model:
 \[H = - \sum_{\langle i,j \rangle} J_{ij} S_i S_j \]

- Remember:
 \[\frac{\xi_L}{L} = \tilde{\xi} [L^{1/\nu}(T - T_c)] \]

- The data cross at \(T_c \approx 0.96 \).

- Spin-glass state at zero field.

- Next: apply a field…

Katzgraber et al., PRB (06)
How well does this work for zero field?

- Study the 3D model:
 \[H = - \sum_{\langle i, j \rangle} J_{ij} S_i S_j \]

- Remember:
 \[\frac{\xi_L}{L} = \tilde{X} [L^{1/\nu}(T - T_c)] \]

- The data cross at \(T_c \approx 0.96 \).

- Spin-glass state at zero field.

- Next: apply a field…

Katzgraber et al., PRB (06)
“Old” 3D results in a field

- Perform “slices” at different horizontal fields.

\[\mathcal{H} \rightarrow \mathcal{H} - \sum_{i} h_i S_i \]

\(H = 0.3 \)

Katzgraber & Young, PRL (04)
“Old” 3D results in a field

- Perform “slices” at different horizontal fields.

\[\mathcal{H} \rightarrow \mathcal{H} - \sum_i h_i S_i \]

Hataf = 0.3

\[H = 0.3 \]

Katzgraber & Young, PRL (04)
“Old” 3D results in a field

- Perform “slices” at different horizontal fields.

\[\mathcal{H} \rightarrow \mathcal{H} - \sum_i h_i S_i \]

Katzgraber & Young, PRL (04)
“Old” 3D results in a field

- Perform “slices” at different horizontal fields.

\[\mathcal{H} \rightarrow \mathcal{H} - \sum_i h_i S_i \]

\[H = 0.3 \]

\[\xi_L/L \]

\[T \]

\[T_c \]

\[H \]

Katzgraber & Young, PRL (04)
“Old” 3D results in a field

- Perform “slices” at different horizontal fields.

\[H \rightarrow H - \sum_i h_i S_i \]

Katzgraber & Young, PRL (04)
"Old" 3D results in a field

- Perform "slices" at different horizontal fields.

Problem: small systems.

Maybe AT line for $d \geq d_u$?

$H = 0.05$ Does the method pick up the AT line?

No AT line in 3D.

$H = 0.05$ $\sum_i h_i S_i$

Katzgraber & Young, PRL (04)
“Old” 3D results in a field

- Perform “slices” at different horizontal fields.

- Problem: small systems.

- Maybe AT line for \(d \geq d_u \)?

- Solution: Use 1D chain
 - Can probe large systems.
 - Can probe MF region to check if the method works.

Katzgraber & Young, PRL (04)

\[H = 0.05 \]

Does the method pick up the AT line?

No AT line in 3D.
Tuning the universality class (1D chain)

- External field $H = 0.10$.
- The data span a large range of system sizes.
- The AT line vanishes outside the MF regime ($\sigma \geq 2/3$).

![Diagram showing AT line and critical exponents](Image)

Katzgraber & Young, PRB (2005)
- External field $H = 0.10$.
- The data span a large range of system sizes.
- The AT line vanishes outside the MF regime ($\sigma \geq 2/3$).
Tuning the universality class (1D chain)

- External field $H = 0.10$.
- The data span a large range of system sizes.
- The AT line vanishes outside the MF regime ($\sigma \geq 2/3$).

![Graph showing ξ_L/L vs. T with different σ values and system sizes.](image)

$\sigma = 0.75$

Katzgraber & Young, PRB (2005)
Tuning the universality class (1D chain)

- External field $H = 0.10$.
- The data span a large range of system sizes.
- The AT line vanishes outside the MF regime ($\sigma \geq 2/3$).

Katzgraber & Young, PRB (2005)
Spin-glass state in a field?

- The AT line vanishes when not in the mean-field regime.
- For short-range spin glasses below the upper critical dimension:

$$H_{AT}$$

Does the behavior change for even larger system sizes?
- What happens for “narrow” AT lines? (see cond-mat/0712.2009)
Spin-glass state in a field?

- The AT line vanishes when not in the mean-field regime.
- For short-range spin glasses below the upper critical dimension:

- Does the behavior change for even larger system sizes?
- What happens for “narrow” AT lines? (see cond-mat/0712.2009)
Spin-glass state in a field?

- The AT line vanishes when not in the mean-field regime.
- For short-range spin glasses below the upper critical dimension:
 - Does the behavior change for even larger system sizes?
 - What happens for “narrow” AT lines? (see cond-mat/0712.2009)
Ultrametricity in spin glasses
What is ultrametricity?

• Formal definition:
 • Given a metric space with a distance function.
 • In general, the distance function obeys the triangle inequality:
 \[d(\alpha, \gamma) \leq d(\alpha, \beta) + d(\beta, \gamma) \]
 • In an ultrametric space we have a stronger inequality:
 \[d(\alpha, \gamma) \leq \max\{d(\alpha, \beta), d(\beta, \gamma)\} \]

• Note:
 • Every triangle is isosceles in an ultrametric space.

• Examples:
 • Linguistics (space where words differ)
 • Taxonomy (classification of species).
 • Number theory (p-adic numbers), ...
What is ultrametricity?

- **Formal definition:**
 - Given a metric space with a distance function.
 - In general, the distance function obeys the triangle inequality:
 \[d(\alpha, \gamma) \leq d(\alpha, \beta) + d(\beta, \gamma) \]
 - In an ultrametric space we have a stronger inequality:
 \[d(\alpha, \gamma) \leq \max\{d(\alpha, \beta), d(\beta, \gamma)\} \]

- **Note:**
 - Every triangle is isosceles in an ultrametric space.

- **Examples:**
 - Linguistics (space where words differ)
 - Taxonomy (classification of species).
 - Number theory (p-adic numbers), ...
Relevance to spin glasses (hand-waving…)

- Replica symmetry breaking solution of the mean-field model:
 \[F = -kT[\log Z]_{av} \quad \text{and} \quad \log Z = \lim_{n \to 0} \left(\frac{Z^n - 1}{n} \right) \]

- Order parameter: overlap function
 \[q = \frac{1}{N} \sum_{i=1}^{N} S_i^\alpha S_i^\beta \]
 \[q = \frac{1}{N} \alpha \times \beta \]

- After replication one obtains:
 \[[\log Z]_{av} \sim \int \Pi_{\alpha, \beta} dQ_{\alpha\beta} e^{NG(Q_{\alpha\beta})} \]

- Typical structure:
 \[Q_{\alpha\beta} = \frac{1}{N} \sum_{i=1}^{N} S_i^{(\alpha)} S_i^{(\beta)} = \]

- One can show that for three states in \(Q_{\alpha\beta} \) with \(q_{\alpha\gamma} \geq q_{\gamma\beta} \geq q_{\alpha\beta} \)
 one has \(q_{\gamma\beta} = q_{\alpha\beta} \) in the thermodynamic limit.

Parisi (79)
Talagrand (06)
What does it mean to be ultrametric?

- Simple test to see if the mean-field solution is applicable to a model:
 - Ultrametricity is a cornerstone of the mean-field solution.
 - If a model has no ultrametricity, the RSB solution is not valid for it.

- Current state of affairs:
 - Are short-range models ultrametric? Very controversial!
 - Many contradicting predictions.

- Problems:
 - Only small short-range systems can be studied.
 - The states for the test have to be selected very carefully.

- Solution:
 - Analysis of the 1D chain [similar to Hed et al. (04)].

Hed et al., PRL (04)
Contucci et al., PRL (06)
Jörg & Krzakala, PRL (07)
and many more...
Achtung! Problems when picking 3 states…

Possible pitfalls:

1. If time-reversal symmetry is unbroken, one has to ensure that all three states used belong to the same “side” of phase space.
2. The temperature must be much smaller than T_c.
3. If the temperature is too small, for large systems most triangles are equilateral (carry no information). Do not study too low T’s.

Solutions:

1. Can be avoided with a clustering analysis: Pick 3 states only from the left tree.
2. Simulations done at $T < T_c$, but not below $T = 0.2T_c$. Data shown for $T = 0.4T_c$.
3. To avoid equilateral triangles pick the 3 states from different branches in the left subtree (C_{1a}, C_{1b}, C_2). Next…
Selection of states (similar to Hed et al.)

- **Generation of states:**
 - Equilibrate system.
 - Store 10^3 states per realization.

- **Selection of states:**
 - Sorted *dendrograms* using Wards clustering method.
 - Pick left tree (“spin down”).
 - Split left tree into $|C_1| \geq |C_2|$.
 - Split C_1 into C_{1a} and C_{1b}.
 - Pick three random states: $\alpha \in C_{1a}, \beta \in C_{1b}, \gamma \in C_2$.

- **Distance matrix:**
 - Darker colors mean closer distances $d_{\alpha\beta} = (1 - q_{\alpha\beta})/2$.

2.

from Hed et al., PRL (04)
Typical distance matrices at $T < T_c$

- Data for the 1D chain, $L = 512, T = 0.4T_c$.

Darker colors correspond to closer hamming distances.
- Both systems show structure at low temperatures.
Typical distance matrices at $T < T_c$

- Data for the 1D chain, $L = 512$, $T = 0.4T_c$.

- Darker colors correspond to closer hamming distances.
- Both systems show structure at low temperatures.
Typical distance matrices at $T < T_c$

- Data for the 1D chain, $L = 512$, $T = 0.4T_c$.

- Darker colors correspond to closer hamming distances.
- Both systems show structure at low temperatures.
How to measure ultrametricity

- **Observable:**
 - Select three states with the aforementioned recipe.
 - Compute the hamming distance between them: \(d_{\alpha\beta} = (1 - q_{\alpha\beta})/2 \).
 - Sort the distances: \(d_{\text{max}} \geq d_{\text{med}} \geq d_{\text{min}} \).
 - Compute:
 \[
 K = \frac{d_{\text{max}} - d_{\text{med}}}{\rho(d)}
 \]

 Here \(\rho(d) \) is the width of the distance distribution.

- **Signs of ultrametricity:**
 - If the space is ultrametric, we expect \(d_{\text{max}} = d_{\text{med}} \) for \(N \to \infty \).
 - Study the distribution \(P(K) \). We expect:
 \[
 P(K) \sim \delta(K = 0) \quad N \to \infty
 \]
How to measure ultrametricity

- Observable:
 - Select three states with the aforementioned recipe.
 - Compute the hamming distance between them: $d_{\alpha\beta} = (1 - q_{\alpha\beta})/2$.
 - Sort the distances: $d_{\text{max}} \geq d_{\text{med}} \geq d_{\text{min}}$.
 - Compute:
 \[
 K = \frac{d_{\text{max}} - d_{\text{med}}}{\rho(d)}
 \]
 Here $\rho(d)$ is the width of the distance distribution.

- Signs of ultrametricity:
 - If the space is ultrametric, we expect $d_{\text{max}} = d_{\text{med}}$ for $N \to \infty$.
 - Study the distribution $P(K)$. We expect:
 \[
 P(K) \sim \delta(K = 0) \quad N \to \infty
 \]
Distributions $P(K)$ at $T = 0.4T_c$

Currently: try to determine the number of RSB layers and clusters.

Similar results for other values of σ.

Katzgraber & Hartmann, submitted

$\sigma = 0.75$
Currently: try to determine the number of RSB layers and clusters.

Similar results for other values of σ.
Distributions $P(K)$ at $T = 0.4T_c$

Currently: try to determine the number of RSB layers and clusters.

Similar results for other values of σ.

Katzgraber & Hartmann, submitted
Currently: try to determine the number of RSB layers and clusters.

Similar results for other values of σ.

$\sigma = 0.75$

indication of ultrametricity?
What else can we do with the 1D chain?
Other ideas currently explored

- Study open problems in spin glasses:
 - Chaos, aging, universality, memory effect, …

- Modifications of the model:
 - Spin symmetries (Potts, Heisenberg, …).
 - p-spin model for structural glasses.
 - Power-law probability-diluted chain (huge systems).

- Benchmarking algorithms:
 - How does the algorithm scale with the size of the input (N)?
 - How does the scaling of the algorithm depend on the complexity/connectivity?
 - 1D chain: range of the interactions (universality class) can be changed.
Other ideas currently explored

- **Study open problems in spin glasses:**
 - Chaos, aging, universality, memory effect, …

- **Modifications of the model:**
 - Spin symmetries (Potts, Heisenberg, …).
 - p-spin model for structural glasses.
 - Power-law probability-diluted chain (huge systems).

- **Benchmarking algorithms:**
 - How does the algorithm scale with the size of the input (N)?
 - How does the scaling of the algorithm depend on the complexity/connectivity?
 - 1D chain: range of the interactions (universality class) can be changed.

Matsuda et al. (07)

![Graph showing critical temperatures T_c, T_w, and T with χ_{AC} as a function of T.]
Probability-diluted Gaussian Ising chain

- Place a Gaussian random bond with $P(J_{ij} \neq 0) \sim r^{-2\sigma}$
- Same behavior as the regular 1D chain, but $[z]_{av} = 2\zeta(2\sigma)$.

Note: Leuzzi et al. fix the connectivity (VB limit). Here SK limit.

$H = -\sum_{i<j} J_{ij} S_i S_j$

$z(\sigma = 0.75) \approx 5.22$

$z(\sigma = 0.75) \approx 5.22$

$\xi/L \approx \frac{1}{\sigma}$

$P(q) \approx 2\zeta(2\sigma)$

$\sigma = 0.75$

Note: Leuzzi et al. fix the connectivity (VB limit). Here SK limit.
Probability-diluted Gaussian Ising chain

- Place a Gaussian random bond with \(\mathcal{P}(J_{ij} \neq 0) \sim r^{-2\sigma} \)
- Same behavior as the regular 1D chain, but \([z]_{av} = 2\zeta(2\sigma) \).

\[
\mathcal{H} = -\sum_{i<j} J_{ij} S_i S_j
\]

Note: Leuzzi et al. fix the connectivity (VB limit). Here SK limit.

\(z(\sigma = 0.75) \approx 5.22 \)

\(\xi/L \sim 0.75 \)

\(\zeta(2\sigma) \approx 5.22 \)

now revisiting the AT line…

\(\sigma = 0.75 \)

\(L \)
Example: Hysteretic optimization

Experiment:
- Do you have a CRT monitor or a non-LCD TV at home?
- Take a magnet and hold it to the screen.
- You are in trouble.

Solution:
- Call the technician.
- Make a degaussing coil and slowly do circles around the TV increasing the radius and distance.

You have just hysteretically (and possibly also hysterically) demagnetized the TV screen.
Example: Hysteretic optimization

Experiment:
- Do you have a CRT monitor or a non-LCD TV at home?
- Take a magnet and hold it to the screen.
- You are in trouble.

Solution:
- Call the technician.
- Make a degaussing coil and slowly do circles around the TV increasing the radius and distance.

- You have just hysteretically (and possibly also hysterically) demagnetized the TV screen.
Idea: Minimize the energy of a system by successive demagnetization.

Example: Ising spin glass

\[\mathcal{H} = - \sum_{ij} J_{ij} S_i S_j - H \sum_i \xi_i S_i \]

\[m = \frac{1}{N} \sum_i \xi_i S_i \]

\[\xi_i = \pm 1 \text{ random} \]

\[H_{\text{sat}} \rightarrow \gamma H_{\text{sat}} \]

for details see Hartmann & Rieger book (04)
Benchmarking: Hysteretic optimization

- **Idea:** Minimize the energy of a system by successive demagnetization.
- **Example:** Ising spin glass

\[\mathcal{H} = - \sum_{ij} J_{ij} S_i S_j - H \sum_i \xi_i S_i \]

\[m = \frac{1}{N} \sum_i \xi_i S_i \]

- The algorithm works best in the **infinite-range** regime.

for details see Hartmann & Rieger book (04)

adapted from Gonçalves & Boettcher (08)

Zarand et al., PRL (02)

\[H_{\text{sat}} \rightarrow \gamma H_{\text{sat}} \]

\[E \]

\[E_0 \rightarrow dH \]

\[\sigma \]

\[L \]

\[\text{64} \quad \text{128} \quad \text{256} \]
Benchmarking: Hysteretic optimization

- Idea: Minimize the energy of a system by successive demagnetization.
- Example: Ising spin glass
 \[\mathcal{H} = - \sum_{ij} J_{ij} S_i S_j - H \sum_i \xi_i S_i \]
 \[m = \frac{1}{N} \sum_i \xi_i S_i \]
 \[H_{\text{sat}} \rightarrow \gamma H_{\text{sat}} \]

- The algorithm worked in the infinite range regime.

adapted from Gonçalves & Boettcher (08)

Other algorithms tested: PT, hBOA, BCP, ...

for details see Hartmann & Rieger book (04)
New insights from one-dimensional spin glasses
New insights from one-dimensional spin glasses

- **Summary:**
 - Do short-range spin glasses order in a field? No.
 - Are short-range spin glasses ultrametric? Seems like it.
 - What does this mean? The mean-field solution works only for certain aspects.

- **Advantages of the 1D model:**
 - Large systems can be studied.
 - The effective space dimension can be changed.
 - Benchmark model for optimization algorithms.
New insights from one-dimensional spin glasses

- Summary:
 - Do short-range spin glasses order in a field? No.
 - Are short-range spin glasses ultrametric? Seems like it.
 - What does this mean? The mean-field solution works only for certain aspects.

- Advantages of the 1D model:
 - Large systems can be studied.
 - The effective space dimension can be changed.
 - Benchmark model for optimization algorithms.