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Outline and Motivation

Introduction to spin glasses (disordered magnets)
What are spin glasses?
Why are they hard to study?

How well does the mean-field solution work?
Model: 1D chain
Do spin glasses order in a field?
Ultrametricity in spin glasses?

Applications to other problems
and algorithm benchmarking.

Work done in collaboration with W. Barthel, S. Böttcher,  B. Gonçalves, 
A. K. Hartmann, T. Jörg, F. Krzakala, and A. P. Young.

ATH

Tc T T

H H

PM

SG SG

+

+

+

_

3



Outline and Motivation

Introduction to spin glasses (disordered magnets)
What are spin glasses?
Why are they hard to study?

How well does the mean-field solution work?
Model: 1D chain
Do spin glasses order in a field?
Ultrametricity in spin glasses?

Applications to other problems
and algorithm benchmarking.

Work done in collaboration with W. Barthel, S. Böttcher,  B. Gonçalves, 
A. K. Hartmann, T. Jörg, F. Krzakala, and A. P. Young.

ATH

Tc T T

H H

PM

SG SG

+

+

+

_

?

3



Outline and Motivation

Introduction to spin glasses (disordered magnets)
What are spin glasses?
Why are they hard to study?

How well does the mean-field solution work?
Model: 1D chain
Do spin glasses order in a field?
Ultrametricity in spin glasses?

Applications to other problems
and algorithm benchmarking.

Work done in collaboration with W. Barthel, S. Böttcher,  B. Gonçalves, 
A. K. Hartmann, T. Jörg, F. Krzakala, and A. P. Young.

ATH

Tc T T

H H

PM

SG SG

+

+

+

_

?

3



Brief introduction to spin glasses
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Building a spin glass from the Ising model

Hamiltonian:

Order parameter: 

Some properties:
Phase transition to an ordered state.
According to Harris criterion, if            the system changes 
universality class when local disorder is added. 
For the Ising model             in 2D and 3D. 

Tc T

m

H
Jij = 1 ∀i, j

m =
1

N

∑

i

Si

i != j

(magnetization)

H = −
∑

〈ij〉

JijSiSj − H
∑

i

Si

dν > 2

dν ≤ 2
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What is a spin glass?

Prototype model: Edwards-Anderson Ising spin glass

Properties:
Phase transition into a glassy phase
Complex energy landscape
Some hallmarks: aging, memory, hysteresis, ...
Complex optimization problem
Very hard to treat analytically beyond mean-field.
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Applications beyond disordered magnets

The models can describe many systems with competing interactions 
on a graph:

Computer chips:

Economic markets:

Other applications:
Quantum error correction in
topological quantum computing (current research).
Optimization problems (e.g., number partitioning problem).
Neural networks, …  

Si

Jij

component

wiring diagram

Si

Jij

agent inclination

portfolio interactions

chip optimization

markets

payload distribution
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Experimental discovery, theoretical pictures
Early experimental observations:

1970: Canella and Mydosh see a cusp in 
the susceptibility of Fe/Au alloys 
(disorder). Material with RKKY 
interactions (frustration):

Early theoretical descriptions:
1975: Introduction of the Edwards-Anderson Ising spin-glass model 
(      random):

1975: Mean-field Sherrington-Kirkpatrick model.
1979: Parisi solution of the mean-field model (RSB).
1986: Fisher, Huse, Bray, Moore introduce the phenomenological 
droplet picture (DP) for short-range systems.

T

!

T

C

Tc Tc

Jij ∼

cos(2kFRij)

R3
ij

H = −
∑

〈ij〉

JijSiSj

Jij ∑

〈ij〉

→

∑

i,j

mean-field approx.
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How can we study these systems?
Analytically:  only the mean-field solution (RSB) or
    qualitative descriptions (DP).

Numerically: Optimal problem for large computers
Challenges:

Exponential number of competing states (usually NP hard).
Relaxation times diverge exponentially with the system size.
Extra overhead due to disorder averaging.
Usually small systems only.

Solution:
Use large computer clusters.
Use better algorithms.
Use better models.

Average project requires 300’000 CPUh (4 months on 102 CPUs).

∞

∞

brutus
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Some open problems... many challenges
Some open issues:

And many more:
Chaos in spin glasses
Nature of the low-temperature spin-glass phase
Properties of vector spin glasses, … 
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Which properties of the mean-field solution 
carry over to short-range systems?
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Models: The 1D Ising chain
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Traditional model: Edwards-Anderson

Hamiltonian:

Details about the model:
Nearest-neighbor interactions.
Simulations usually done with periodic boundary conditions.
Transition temperatures: Tc = 0 (2D),  Tc ~ 1 (3D), Tc ~ 2 (4D).
Most studied spin-glass model to date.

Disadvantages of the model:
Cannot be solved analytically.
In high space dimensions only small systems can be simulated 
(D ≥ 5 almost impossible).

H = −
∑

〈i,j〉

JijSiSj Si ∈ {±1}

P(Jij)

Jij+1−1
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Better: The one-dimensional Ising chain

Properties:
The sum ranges over all spins
Power-law random interactions

Advantages:
Large range of sizes.
Tuning the power-law exponent changes the universality class.

H = −
∑

ij

JijSiSj −
∑
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Tuning the universality class

Short-range spin glasses:

Upper critical dimension du = 6 (for d ≥ du MF behavior)

Lower critical dimension dl = 2 (for d ≤ dl Tc = 0)

Phase diagram of the 1D chain:

MF non-MFSK

0                   1/2      2/3                1

                                6                  2deff =

σ =

∞

Tc > 0 Tc = 0

Kotliar et al., PRB (83)

deff ≈

2

2σ − 1
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expect MF predictions to work
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Algorithms
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Reminder: Exchange Monte Carlo

Efficient algorithm to treat spin glasses at finite T.
Idea: 

Simulate M copies of the system at different 
temperatures with Tmax > Tc (typically Tmax ~2TcMF).
Allow swapping of neighboring temperatures: 
easy crossing of barriers. 

Extremely fast equilibration at low temperatures.
For the following applications we use this algorithm... 

T
T

T

1
2

fa
st

slo
w

M

configuration space

E

T1 2

P(E)

ET

Hukushima & Nemoto (96)
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Do spin glasses order in a field?
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Spin-glass state in a field?
Two possible scenarios:

Replica Symmetry Breaking (RSB): existence of an instability line 
[Almeida & Thouless (78)] for the mean-field SK model.
Droplet picture (DP): there is no spin-glass state in a field.

Why should we care?
The question lies at the core of theoretical descriptions. 
Field terms are ubiquitous in applications/experiments.
Experimentally, numerically, and theoretically controversial.

RSB DP
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Tc T Tc T

H H
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SG SG
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1. Tool to probe transition
2. Review of old 3D results
3. Improved results in 1D

Outline:

Experiments: Katori & Ito (94), Mattson et al. (95)           Simulations: Bhatt & Young (86), Kawashima & Young (96), Marinari et al. (98), Krzakala et al. (02), Takayama & Hukushima (04), Young & Katzgraber (04), Katzgraber & Young (06)...
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Probing criticality: correlation length

Use the finite-size correlation length to probe criticality in spin-glass 
systems:

Wave-vector-dependent connected spin-glass susceptibility:

Perform an Ornstein-Zernicke approximation:

Compensate for finite-size effects and periodic boundaries:

Finite-size scaling:

Better than Binder ratio.

ξL

L
= X̃

(

L1/ν [T − Tc]
)

[χSG(k)/χSG(0)]−1 = 1 + ξ2
Lk2 + O[(ξLk)4]

ξL =
1

2 sin(kmin/2)

[

χSG(0)

χSG(kmin)
− 1

]1/2

1.

Ballesteros et al. PRB (00)

χSG(k) =
1

N

∑

ij

[

(〈SiSj〉T − 〈Si〉T 〈Sj〉T )2
]

dis
eik(Ri−Rj)
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How well does this work for zero field?
Study the 3D model:

Remember:

The data cross at
               .
Spin-glass state at
zero field.

Next: apply a field… 

Tc ≈ 0.96

Katzgraber et al., PRB (06)

2.

H = −
∑

〈i,j〉

JijSiSj

ξL

L
=X̃[L1/ν(T − Tc)]
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“Old” 3D results in a field

Perform “slices” at different
horizontal fields.

Solution: Use 1D chain
Can probe large systems.
Can probe MF region to 
check if the method works.

2.

ATH

Tc T

H

SG

PM

H = 0.3

H → H−
∑

i

hiSi

Katzgraber & Young, PRL (04)
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Tuning the universality class (1D chain)

External field H = 0.10.
The data span a large 
range of system sizes.
The AT line vanishes 
outside the MF regime 
(             ).

SK MF non-MF
0         1/2   2/3         1

                    6           2

σ

d∞

AT no AT

σ ≥ 2/3

AT line

Katzgraber & Young, PRB (2005)
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Spin-glass state in a field?

The AT line vanishes when not in the mean-field regime.
For short-range spin glasses below the upper critical dimension:

Does the behavior change for even larger system sizes?
What happens for “narrow” AT lines? (see cond-mat/0712.2009)
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Ultrametricity in spin glasses
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What is ultrametricity?
Formal definition:

Given a metric space with a distance function.
In general, the distance function obeys the triangle inequality:

In an ultrametric space we have a stronger inequality:

Note:
Every triangle is isosceles in an ultrametric space.

Examples:
Linguistics (space where words differ)
Taxonomy (classification of species).
Number theory (p-adic numbers), ...

d(α, γ) ≤ d(α, β) + d(β, γ)

d(α, γ) ≤ max{d(α, β), d(β, γ)}

α

β

γ
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Relevance to spin glasses (hand-waving… )

Replica symmetry breaking solution of the mean-field model:

Order parameter: overlap function

After replication one obtains:

Typical structure:
                                
One can show that for three
states in        with 
one has                 in the thermodynamic limit.

Parisi (79)
log Z = lim

n→0

(

Zn
− 1

n

)

F = −kT [log Z]av

q =
1

N

N∑

i=1

Sα
i Sβ

i q =
1

N
×α β

1 ≤ α, β ≤ n

[log Z]av ∼

∫
Πα,βdQαβeNG(Qαβ)

Qαβ =
1

N

N∑

i=1

S
(α)
i S

(β)
i

qαγ ≥ qγβ ≥ qαβ

qγβ = qαβ

Qαβ

=

Talagrand (06)

1.
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What does it mean to be ultrametric?

Simple test to see if the mean-field solution is applicable to a model:
Ultrametricity is a cornerstone of the mean-field solution.
If a model has no ultrametricity, the RSB solution is not valid for it.

Current state of affairs:
Are short-range models ultrametric? Very controversial!
Many contradicting predictions.

Problems:
Only small short-range systems can be studied.
The states for the test have to be selected very carefully.

Solution: 
Analysis of the 1D chain [similar to Hed et al. (04)].

Hed et al., PRL (04)
Contucci et al., PRL (06)
Jörg & Krzakala, PRL (07)
and many more...

1.

α

β

γ
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Achtung! Problems when picking 3 states… 

Possible pitfalls:
1. If time-reversal symmetry is unbroken, one has to ensure that all 

three states used belong to the same “side” of phase space.
2. The temperature must be much smaller than Tc.
3. If the temperature is too small, for large systems most triangles are 

equilateral (carry no information). Do not study too low T’s.

Solutions:
1. Can be avoided with a clustering analysis: Pick 3 states only from 

the left tree.
2. Simulations done at T < Tc, but not below T = 0.2Tc. Data shown 

for T = 0.4Tc.
3. To avoid equilateral triangles pick the 3 states from different 

branches in the left subtree (C1a, C1b, C2). Next… 

Hed et al., PRL (04)

2.
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Selection of states (similar to Hed et al.)
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Generation of states:
Equilibrate system.
Store 103 states per realization.

Selection of states:
Sorted dendrograms using
Wards clustering method.
Pick left tree (“spin down”).

Split left tree into |C1| ≥ |C2|.
Split C1 into C1a and C1b.
Pick three random states:
              ,              ,            .

Distance matrix:
Darker colors mean closer
distances                              . 

α ∈ C1a β ∈ C1b γ ∈ C2

dendrogram

distance
matrix

dαβ = (1 − qαβ)/2

T < Tc
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Typical distance matrices at T < Tc

Data for the 1D chain, L = 512, T = 0.4Tc. 

Darker colors correspond to closer hamming distances.
Both systems show structure at low temperatures.

SK σ = 0.75

2.
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Typical distance matrices at T < Tc

Data for the 1D chain, L = 512, T = 0.4Tc. 

Darker colors correspond to closer hamming distances.
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Typical distance matrices at T < Tc

Data for the 1D chain, L = 512, T = 0.4Tc. 

Darker colors correspond to closer hamming distances.
Both systems show structure at low temperatures.

SK σ = 0.75
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How to measure ultrametricity

Observable:
Select three states with the aforementioned recipe.
Compute the hamming distance between them:                              . 
Sort the distances:                                .
Compute:

Here        is the width of the distance distribution.

Signs of ultrametricity:
If the space is ultrametric, we expect                      for              .
Study the distribution P(K). We expect:

dαβ = (1 − qαβ)/2

dmax ≥ dmed ≥ dmin

K =
dmax − dmed

ρ(d)

ρ(d)

dmax = dmed N → ∞

P (K) ∼ δ(K = 0) N → ∞

2.
31



How to measure ultrametricity

Observable:
Select three states with the aforementioned recipe.
Compute the hamming distance between them:                              . 
Sort the distances:                                .
Compute:

Here        is the width of the distance distribution.

Signs of ultrametricity:
If the space is ultrametric, we expect                      for              .
Study the distribution P(K). We expect:

dαβ = (1 − qαβ)/2

dmax ≥ dmed ≥ dmin

K =
dmax − dmed

ρ(d)

ρ(d)

dmax = dmed N → ∞

P (K) ∼ δ(K = 0) N → ∞

2.
31



Distributions P(K) at T = 0.4Tc

Currently: try to determine the number of RSB layers and clusters.
Similar results for other values of    .

Katzgraber & Hartmann, submitted

 SK σ = 0.75

3.
σ
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Distributions P(K) at T = 0.4Tc

Currently: try to determine the number of RSB layers and clusters.
Similar results for other values of    .

Katzgraber & Hartmann, submitted

 SK σ = 0.75

3.
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y?
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What else can we do with the 1D chain?

34



Other ideas currently explored

Study open problems in spin glasses:
Chaos, aging, universality, memory effect, …  

Modifications of the model:
Spin symmetries (Potts, Heisenberg, … ).
p-spin model for structural glasses.
Power-law probability-diluted chain (huge systems).

Benchmarking algorithms:
How does the algorithm scale with 
the size of the input (N)? 
How does the scaling of the algorithm 
depend on the complexity/connectivity?
1D chain: range of the interactions (universality class) can be changed.

Matsuda et al. (07)

SK MF non-MF
0         1/2   2/3         1

                    6           2

σ

d∞

T

!AC

Tw Tc

35



Other ideas currently explored

Study open problems in spin glasses:
Chaos, aging, universality, memory effect, …  

Modifications of the model:
Spin symmetries (Potts, Heisenberg, … ).
p-spin model for structural glasses.
Power-law probability-diluted chain (huge systems).

Benchmarking algorithms:
How does the algorithm scale with 
the size of the input (N)? 
How does the scaling of the algorithm 
depend on the complexity/connectivity?
1D chain: range of the interactions (universality class) can be changed.

Matsuda et al. (07)

SK MF non-MF
0         1/2   2/3         1

                    6           2

σ

d∞

1. diluted model
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Probability-diluted Gaussian Ising chain
Place a Gaussian random bond with                           
Same behavior as the regular 
1D chain, but                       .

Note: Leuzzi et al. fix the connectivity (VB limit). Here SK limit.

Leuzzi, et al. (08)

1.

H = −
∑

i<j

JijSiSj

P(Jij != 0) ∼ r
−2σ

σ = 0.75z(σ = 0.75) ≈ 5.22

[z]av = 2ζ(2σ)
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Probability-diluted Gaussian Ising chain
Place a Gaussian random bond with                           
Same behavior as the regular 
1D chain, but                       .

Note: Leuzzi et al. fix the connectivity (VB limit). Here SK limit.

Leuzzi, et al. (08)

1.

H = −
∑

i<j

JijSiSj

P(Jij != 0) ∼ r
−2σ

σ = 0.75z(σ = 0.75) ≈ 5.22

now 
revisiting the AT 

line… 

[z]av = 2ζ(2σ)
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Example: Hysteretic optimization

Experiment:
Do you have a CRT monitor or a 
non-LCD TV at home?
Take a magnet and hold it to the 
screen.
You are in trouble.

Solution:
Call the technician. 
Make a degaussing coil and slowly do circles around the TV 
increasing the radius and distance.

You have just hysteretically (and possibly also hysterically) demagnetized 
the TV screen.

Zarand et al., PRL (02)
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Benchmarking: Hysteretic optimization

Idea: Minimize the energy of a system by successive demagnetization.
Example: Ising spin glass
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2.

Zarand et al., PRL (02)

H = −
∑

ij

JijSiSj − H
∑

i

ξiSi

ξi = ±1 random
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(June 6, 2006)

We propose a new optimization method based on a demagnetization procedure well known in
magnetism. We show how this procedure can be applied as a general tool to search for optimal
solutions in any system where the configuration space is endowed with a suitable ‘distance’. We test
the new algorithm on frustrated magnetic models and the traveling salesman problem. We find that
the new method successfully competes with similar basic algorithms such as simulated annealing.

It has been observed long time ago that disordered
materials can be brought into a remarkably stable state
through annealing, i.e. cooling down the material rather
slowly. This simple observation inspired Kirkpatrick,
Gelatt, and Vecchi in their pioneering work [1] to inves-
tigate how close this annealing procedure takes models
with glassy properties to their ground state, and lead
them to the invention of the by now widely used sim-
ulated annealing (SA) procedure. The SA revealed the
crucial role the external noise can play in optimization:
Thermal noise can help to escape high-energy local min-
ima. In the present work we investigate another proce-
dure that is commonly used to demagnetize disordered
magnets and is experimentally known to result in a very
stable state: The application of an oscillating external
field (see Figure 1). This procedure makes use of an-
other type of noise which is typical in magnetic systems,
namely random external fields. As we shall demonstrate
below for various models, a simple generalization of this
zero-temperature ‘a.c. demagnetization’ is able to give
systematically better and better approximations to the
ground state of these models, and is in many cases 5-10-
times faster than SA. We shall show how this method can
be applied to practically any disordered model, thereby
resulting in a new optimization procedure, that we call
hysteretic optimization (HO).

Finding optimal solutions of complex problems de-
pending on a large number of parameters is an equally
important and difficult task [2]. Examples range from
integrated circuit design, through portfolio selection on
the stock market [3] and calculating protein folding, to
teaching artificial neural networks, to name a few. The
simultaneous presence of randomness and frustration is
what makes these problems so hard: Disorder is caused
by the non-regular dependence of the quality of the so-
lution on the configuration, and frustration is brought in
by the competition of mutually exclusive different “good”
properties. As a result, on one hand, a naiv search often
gets stuck in spurious minima while, on the other hand,
comparably good solutions can be found with quite dif-

ferent configurations.
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FIG. 1. The total internal energy (without the Zeeman
term) of a three dimensional (L = 10) Edwards-Anderson
spin glass during a.c. demagnetization. The inset shows the
corresponding magnetization curve.

It is important to note that most hysteretic systems
fulfill the above requirements of complexity. Hysteresis
implies the presence of many metastable states caused
mainly by disorder. In the case of magnetic materials,
the other important ingredient, frustration, is furnished
by the magnetostatic interaction, which can be ferro- or
antiferromagnetic depending on the relative orientation
of the dipoles. This analogy between magnetic sytems
and optimization suggests that part of knowledge ac-
cumulated through decades by hysteresis research [4,5]
will eventually prove useful in optimization (and vice
versa). Indeed, a simple but very frequently used hys-
teresis model, the Preisach model [4–6], can be put in its
ground state by a.c. demagnetization.

In this letter, we proceed by studying in detail the en-
ergetics of a.c. demagnetization for spin glass models.
Then we show how this simple method can be modified
to obtain a hysteretic optimization technique, which sys-
tematically approaches the ground state [7], and we com-
pare the new algorithm with SA. We also present how HO
can be combined with cluster renormalization, and apply
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the new method successfully competes with similar basic algorithms such as simulated annealing.

It has been observed long time ago that disordered
materials can be brought into a remarkably stable state
through annealing, i.e. cooling down the material rather
slowly. This simple observation inspired Kirkpatrick,
Gelatt, and Vecchi in their pioneering work [1] to inves-
tigate how close this annealing procedure takes models
with glassy properties to their ground state, and lead
them to the invention of the by now widely used sim-
ulated annealing (SA) procedure. The SA revealed the
crucial role the external noise can play in optimization:
Thermal noise can help to escape high-energy local min-
ima. In the present work we investigate another proce-
dure that is commonly used to demagnetize disordered
magnets and is experimentally known to result in a very
stable state: The application of an oscillating external
field (see Figure 1). This procedure makes use of an-
other type of noise which is typical in magnetic systems,
namely random external fields. As we shall demonstrate
below for various models, a simple generalization of this
zero-temperature ‘a.c. demagnetization’ is able to give
systematically better and better approximations to the
ground state of these models, and is in many cases 5-10-
times faster than SA. We shall show how this method can
be applied to practically any disordered model, thereby
resulting in a new optimization procedure, that we call
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Finding optimal solutions of complex problems de-
pending on a large number of parameters is an equally
important and difficult task [2]. Examples range from
integrated circuit design, through portfolio selection on
the stock market [3] and calculating protein folding, to
teaching artificial neural networks, to name a few. The
simultaneous presence of randomness and frustration is
what makes these problems so hard: Disorder is caused
by the non-regular dependence of the quality of the so-
lution on the configuration, and frustration is brought in
by the competition of mutually exclusive different “good”
properties. As a result, on one hand, a naiv search often
gets stuck in spurious minima while, on the other hand,
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FIG. 1. The total internal energy (without the Zeeman
term) of a three dimensional (L = 10) Edwards-Anderson
spin glass during a.c. demagnetization. The inset shows the
corresponding magnetization curve.

It is important to note that most hysteretic systems
fulfill the above requirements of complexity. Hysteresis
implies the presence of many metastable states caused
mainly by disorder. In the case of magnetic materials,
the other important ingredient, frustration, is furnished
by the magnetostatic interaction, which can be ferro- or
antiferromagnetic depending on the relative orientation
of the dipoles. This analogy between magnetic sytems
and optimization suggests that part of knowledge ac-
cumulated through decades by hysteresis research [4,5]
will eventually prove useful in optimization (and vice
versa). Indeed, a simple but very frequently used hys-
teresis model, the Preisach model [4–6], can be put in its
ground state by a.c. demagnetization.

In this letter, we proceed by studying in detail the en-
ergetics of a.c. demagnetization for spin glass models.
Then we show how this simple method can be modified
to obtain a hysteretic optimization technique, which sys-
tematically approaches the ground state [7], and we com-
pare the new algorithm with SA. We also present how HO
can be combined with cluster renormalization, and apply
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Benchmarking: Hysteretic optimization

Idea: Minimize the energy of a system by successive demagnetization.
Example: Ising spin glass
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infinite range

The algorithm works best in the infinite-
range regime.

2.

Zarand et al., PRL (02)

H = −
∑

ij

JijSiSj − H
∑

i

ξiSi

ξi = ±1 random

ar
X

iv
:c

o
n
d
-m

at
/0

1
0
9
3
5
9
 v

2
  
 1

9
 S

ep
 2

0
0
1

Hysteretic Optimization

G. Zaránd1,2, F. Pázmándi2,3,5, K. F. Pál4, and G. T. Zimányi3
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We propose a new optimization method based on a demagnetization procedure well known in
magnetism. We show how this procedure can be applied as a general tool to search for optimal
solutions in any system where the configuration space is endowed with a suitable ‘distance’. We test
the new algorithm on frustrated magnetic models and the traveling salesman problem. We find that
the new method successfully competes with similar basic algorithms such as simulated annealing.

It has been observed long time ago that disordered
materials can be brought into a remarkably stable state
through annealing, i.e. cooling down the material rather
slowly. This simple observation inspired Kirkpatrick,
Gelatt, and Vecchi in their pioneering work [1] to inves-
tigate how close this annealing procedure takes models
with glassy properties to their ground state, and lead
them to the invention of the by now widely used sim-
ulated annealing (SA) procedure. The SA revealed the
crucial role the external noise can play in optimization:
Thermal noise can help to escape high-energy local min-
ima. In the present work we investigate another proce-
dure that is commonly used to demagnetize disordered
magnets and is experimentally known to result in a very
stable state: The application of an oscillating external
field (see Figure 1). This procedure makes use of an-
other type of noise which is typical in magnetic systems,
namely random external fields. As we shall demonstrate
below for various models, a simple generalization of this
zero-temperature ‘a.c. demagnetization’ is able to give
systematically better and better approximations to the
ground state of these models, and is in many cases 5-10-
times faster than SA. We shall show how this method can
be applied to practically any disordered model, thereby
resulting in a new optimization procedure, that we call
hysteretic optimization (HO).

Finding optimal solutions of complex problems de-
pending on a large number of parameters is an equally
important and difficult task [2]. Examples range from
integrated circuit design, through portfolio selection on
the stock market [3] and calculating protein folding, to
teaching artificial neural networks, to name a few. The
simultaneous presence of randomness and frustration is
what makes these problems so hard: Disorder is caused
by the non-regular dependence of the quality of the so-
lution on the configuration, and frustration is brought in
by the competition of mutually exclusive different “good”
properties. As a result, on one hand, a naiv search often
gets stuck in spurious minima while, on the other hand,
comparably good solutions can be found with quite dif-

ferent configurations.
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FIG. 1. The total internal energy (without the Zeeman
term) of a three dimensional (L = 10) Edwards-Anderson
spin glass during a.c. demagnetization. The inset shows the
corresponding magnetization curve.

It is important to note that most hysteretic systems
fulfill the above requirements of complexity. Hysteresis
implies the presence of many metastable states caused
mainly by disorder. In the case of magnetic materials,
the other important ingredient, frustration, is furnished
by the magnetostatic interaction, which can be ferro- or
antiferromagnetic depending on the relative orientation
of the dipoles. This analogy between magnetic sytems
and optimization suggests that part of knowledge ac-
cumulated through decades by hysteresis research [4,5]
will eventually prove useful in optimization (and vice
versa). Indeed, a simple but very frequently used hys-
teresis model, the Preisach model [4–6], can be put in its
ground state by a.c. demagnetization.

In this letter, we proceed by studying in detail the en-
ergetics of a.c. demagnetization for spin glass models.
Then we show how this simple method can be modified
to obtain a hysteretic optimization technique, which sys-
tematically approaches the ground state [7], and we com-
pare the new algorithm with SA. We also present how HO
can be combined with cluster renormalization, and apply
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the new algorithm on frustrated magnetic models and the traveling salesman problem. We find that
the new method successfully competes with similar basic algorithms such as simulated annealing.

It has been observed long time ago that disordered
materials can be brought into a remarkably stable state
through annealing, i.e. cooling down the material rather
slowly. This simple observation inspired Kirkpatrick,
Gelatt, and Vecchi in their pioneering work [1] to inves-
tigate how close this annealing procedure takes models
with glassy properties to their ground state, and lead
them to the invention of the by now widely used sim-
ulated annealing (SA) procedure. The SA revealed the
crucial role the external noise can play in optimization:
Thermal noise can help to escape high-energy local min-
ima. In the present work we investigate another proce-
dure that is commonly used to demagnetize disordered
magnets and is experimentally known to result in a very
stable state: The application of an oscillating external
field (see Figure 1). This procedure makes use of an-
other type of noise which is typical in magnetic systems,
namely random external fields. As we shall demonstrate
below for various models, a simple generalization of this
zero-temperature ‘a.c. demagnetization’ is able to give
systematically better and better approximations to the
ground state of these models, and is in many cases 5-10-
times faster than SA. We shall show how this method can
be applied to practically any disordered model, thereby
resulting in a new optimization procedure, that we call
hysteretic optimization (HO).

Finding optimal solutions of complex problems de-
pending on a large number of parameters is an equally
important and difficult task [2]. Examples range from
integrated circuit design, through portfolio selection on
the stock market [3] and calculating protein folding, to
teaching artificial neural networks, to name a few. The
simultaneous presence of randomness and frustration is
what makes these problems so hard: Disorder is caused
by the non-regular dependence of the quality of the so-
lution on the configuration, and frustration is brought in
by the competition of mutually exclusive different “good”
properties. As a result, on one hand, a naiv search often
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FIG. 1. The total internal energy (without the Zeeman
term) of a three dimensional (L = 10) Edwards-Anderson
spin glass during a.c. demagnetization. The inset shows the
corresponding magnetization curve.

It is important to note that most hysteretic systems
fulfill the above requirements of complexity. Hysteresis
implies the presence of many metastable states caused
mainly by disorder. In the case of magnetic materials,
the other important ingredient, frustration, is furnished
by the magnetostatic interaction, which can be ferro- or
antiferromagnetic depending on the relative orientation
of the dipoles. This analogy between magnetic sytems
and optimization suggests that part of knowledge ac-
cumulated through decades by hysteresis research [4,5]
will eventually prove useful in optimization (and vice
versa). Indeed, a simple but very frequently used hys-
teresis model, the Preisach model [4–6], can be put in its
ground state by a.c. demagnetization.

In this letter, we proceed by studying in detail the en-
ergetics of a.c. demagnetization for spin glass models.
Then we show how this simple method can be modified
to obtain a hysteretic optimization technique, which sys-
tematically approaches the ground state [7], and we com-
pare the new algorithm with SA. We also present how HO
can be combined with cluster renormalization, and apply
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Benchmarking: Hysteretic optimization

Idea: Minimize the energy of a system by successive demagnetization.
Example: Ising spin glass
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infinite range

The algorithm works best in the infinite-
range regime.

2.

Other 
algorithms tested: 

PT, hBOA, BCP, ...

Zarand et al., PRL (02)
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We propose a new optimization method based on a demagnetization procedure well known in
magnetism. We show how this procedure can be applied as a general tool to search for optimal
solutions in any system where the configuration space is endowed with a suitable ‘distance’. We test
the new algorithm on frustrated magnetic models and the traveling salesman problem. We find that
the new method successfully competes with similar basic algorithms such as simulated annealing.

It has been observed long time ago that disordered
materials can be brought into a remarkably stable state
through annealing, i.e. cooling down the material rather
slowly. This simple observation inspired Kirkpatrick,
Gelatt, and Vecchi in their pioneering work [1] to inves-
tigate how close this annealing procedure takes models
with glassy properties to their ground state, and lead
them to the invention of the by now widely used sim-
ulated annealing (SA) procedure. The SA revealed the
crucial role the external noise can play in optimization:
Thermal noise can help to escape high-energy local min-
ima. In the present work we investigate another proce-
dure that is commonly used to demagnetize disordered
magnets and is experimentally known to result in a very
stable state: The application of an oscillating external
field (see Figure 1). This procedure makes use of an-
other type of noise which is typical in magnetic systems,
namely random external fields. As we shall demonstrate
below for various models, a simple generalization of this
zero-temperature ‘a.c. demagnetization’ is able to give
systematically better and better approximations to the
ground state of these models, and is in many cases 5-10-
times faster than SA. We shall show how this method can
be applied to practically any disordered model, thereby
resulting in a new optimization procedure, that we call
hysteretic optimization (HO).

Finding optimal solutions of complex problems de-
pending on a large number of parameters is an equally
important and difficult task [2]. Examples range from
integrated circuit design, through portfolio selection on
the stock market [3] and calculating protein folding, to
teaching artificial neural networks, to name a few. The
simultaneous presence of randomness and frustration is
what makes these problems so hard: Disorder is caused
by the non-regular dependence of the quality of the so-
lution on the configuration, and frustration is brought in
by the competition of mutually exclusive different “good”
properties. As a result, on one hand, a naiv search often
gets stuck in spurious minima while, on the other hand,
comparably good solutions can be found with quite dif-

ferent configurations.
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FIG. 1. The total internal energy (without the Zeeman
term) of a three dimensional (L = 10) Edwards-Anderson
spin glass during a.c. demagnetization. The inset shows the
corresponding magnetization curve.

It is important to note that most hysteretic systems
fulfill the above requirements of complexity. Hysteresis
implies the presence of many metastable states caused
mainly by disorder. In the case of magnetic materials,
the other important ingredient, frustration, is furnished
by the magnetostatic interaction, which can be ferro- or
antiferromagnetic depending on the relative orientation
of the dipoles. This analogy between magnetic sytems
and optimization suggests that part of knowledge ac-
cumulated through decades by hysteresis research [4,5]
will eventually prove useful in optimization (and vice
versa). Indeed, a simple but very frequently used hys-
teresis model, the Preisach model [4–6], can be put in its
ground state by a.c. demagnetization.

In this letter, we proceed by studying in detail the en-
ergetics of a.c. demagnetization for spin glass models.
Then we show how this simple method can be modified
to obtain a hysteretic optimization technique, which sys-
tematically approaches the ground state [7], and we com-
pare the new algorithm with SA. We also present how HO
can be combined with cluster renormalization, and apply
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fulfill the above requirements of complexity. Hysteresis
implies the presence of many metastable states caused
mainly by disorder. In the case of magnetic materials,
the other important ingredient, frustration, is furnished
by the magnetostatic interaction, which can be ferro- or
antiferromagnetic depending on the relative orientation
of the dipoles. This analogy between magnetic sytems
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cumulated through decades by hysteresis research [4,5]
will eventually prove useful in optimization (and vice
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teresis model, the Preisach model [4–6], can be put in its
ground state by a.c. demagnetization.
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New insights from one-dimensional
spin glasses
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Summary:
Do short-range spin glasses order in a field? No.
Are short-range spin glasses ultrametric? Seems like it.
What does this mean? The mean-field solution works 
only for certain aspects.

Advantages of the 1D model:
Large systems can be studied.
The effective space dimension can be changed.
Benchmark model for optimization algorithms.

New insights from one-dimensional
spin glasses

39



Summary:
Do short-range spin glasses order in a field? No.
Are short-range spin glasses ultrametric? Seems like it.
What does this mean? The mean-field solution works 
only for certain aspects.

Advantages of the 1D model:
Large systems can be studied.
The effective space dimension can be changed.
Benchmark model for optimization algorithms.

New insights from one-dimensional
spin glasses

©
  B

ill
 W

at
te

rs
on

 

thanks!

39


