New insights from one-dimensional spin glasses

http://katzgraber.org/stuff/leipzig

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

New insights from one-dimensional spin glasses Helmut G. Katzgraber

http://katzgraber.org

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

New insights from one-dimensional spin glasses Helmut G. Katzgraber

http://katzgraber.org

Outline and Motivation

- Introduction to spin glasses (disordered magnets)
 - What are spin glasses?
 - Why are they hard to study?

• How well does the mean-field solution work?

- Model: ID chain
- Do spin glasses order in a field?
- Ultrametricity in spin glasses?
- Applications to other problems and algorithm benchmarking.

 Work done in collaboration with W. Barthel, S. Böttcher, B. Gonçalves, A. K. Hartmann, T. Jörg, F. Krzakala, and A. P. Young.

Outline and Motivation

- Introduction to spin glasses (disordered magnets)
 - What are spin glasses?
 - Why are they hard to study?
- How well does the mean-field solution work?
 - Model: ID chain
 - Do spin glasses order in a field?
 - Ultrametricity in spin glasses?
 - Applications to other problems and algorithm benchmarking.

 Work done in collaboration with W. Barthel, S. Böttcher, B. Gonçalves, A. K. Hartmann, T. Jörg, F. Krzakala, and A. P. Young.

 H_{AT}

Outline and Motivation

- Introduction to spin glasses (disordered magnets)
 - What are spin glasses?
 - Why are they hard to study?
- How well does the mean-field solution work?
 - Model: ID chain
 - Do spin glasses order in a field?
 - Ultrametricity in spin glasses?
 - Applications to other problems and algorithm benchmarking.

 Work done in collaboration with W. Barthel, S. Böttcher, B. Gonçalves, A. K. Hartmann, T. Jörg, F. Krzakala, and A. P. Young.

Brief introduction to spin glasses

Building a spin glass from the Ising model

• Hamiltonian:

$$\mathcal{H} = -\sum_{\langle ij\rangle} J_{ij} S_i S_j - H \sum_i S_i$$
$$J_{ij} = 1 \quad \forall i, j \quad i \neq j$$

• Order parameter:

$$m = rac{1}{N} \sum_{i} S_i$$
 (magnetization)

- Some properties:
 - Phase transition to an ordered state.
 - According to Harris criterion, if $d\nu > 2$ the system changes universality class when local disorder is added.
 - For the Ising model $d\nu \leq 2$ in 2D and 3D.

What is a spin glass?

Prototype model: Edwards-Anderson Ising spin glass

Very hard to treat analytically beyond mean-field.

What is a spin glass?

Prototype model: Edwards-Anderson Ising spin glass

What is a spin glass?

Prototype model: Edwards-Anderson Ising spin glass

Applications beyond disordered magnets

- The models can describe many systems with competing interactions on a graph:
 - Computer chips:
 - S_i component
 - J_{ij} wiring diagram
 - Economic markets:
 - S_i agent inclination
 - J_{ij} portfolio interactions
- Other applications:
 - Quantum error correction in topological quantum computing (current research).
 - Optimization problems (e.g., number partitioning problem).
 - Neural networks, ...

7

chip optimization

payload distribution

Experimental discovery, theoretical pictures

• Early experimental observations:

- I970: Canella and Mydosh see a cusp in the susceptibility of Fe/Au alloys (disorder). Material with RKKY interactions (frustration):
- Early theoretical descriptions:
 - 1975: Introduction of the Edwards-Anderson Ising spin-glass model $(J_{ij}$ random):

$$\mathcal{H} = -\sum_{\langle ij \rangle} J_{ij} S_i S_j \quad \text{mean-field approx.} \quad \sum_{\langle ij \rangle} \rightarrow \sum_{i,j} J_{ij} S_i S_j$$

- 1975: Mean-field Sherrington-Kirkpatrick model.
- 1979: Parisi solution of the mean-field model (RSB).
- I986: Fisher, Huse, Bray, Moore introduce the phenomenological droplet picture (DP) for short-range systems.

How can we study these systems?

- Analytically: only the mean-field solution (RSB) or qualitative descriptions (DP).
- Numerically: Optimal problem for large computers
 - Challenges:
 - Exponential number of competing states (usually NP hard).
 - Relaxation times diverge exponentially with the system size.
 - Extra overhead due to disorder averaging.
 - Usually small systems only.
 - Solution:
 - Use large computer clusters.
 - Use better algorithms.
 - Use better models.
 - Average project requires 300'000 CPUh (4 months on 10² CPUs).

How can we study these systems?

- Analytically: only the mean-field solution (RSB) or qualitative descriptions (DP).
- Numerically: Optimal problem for large computers
 - Challenges:
 - Exponential number of competing states (usually NP hard).
 - Relaxation times diverge exponentially with the system size.
 - Extra overhead due to disorder averaging.
 - Usually small systems only.
 - Solution:
 - Use large computer cl
 - Use better algorithms.
 - Use better models.
 - Average project requires 300'000 CPUh (4 months on 10² CPUs).

How can we study these systems?

- Analytically: only the mean-field solution (RSB) or qualitative descriptions (DP).
- Numerically: Optimal problem for large computers
 - Challenges:
 - Exponential number of competing states (usually NP hard).
 - Relaxation times diverge exponentially with the system size.
 - Extra overhead due to disorder averaging.
 - Usually small systems only.
 - Solution:
 - Use large computer clusters.
 - Use better algorithr talk II
 - Use better models.
 - Average project requires 300'000 CPUh (4 months on 10² CPUs).

Some open problems... many challenges

- Chaos in spin glasses
- Nature of the low-temperature spin-glass phase
- Properties of vector spin glasses, ...

Some open problems... many challenges

- Chaos in spin glasses
- Nature of the low-temperature spin-glass phase
- Properties of vector spin glasses, ...

Some open problems... many challenges

- Chaos in spin glasses
- Nature of the low-temperature spin-glass phase
- Properties of vector spin glasses, ...

Which properties of the mean-field solution carry over to short-range systems?

Models: The ID Ising chain

Traditional model: Edwards-Anderson

• Hamiltonian:

$$\mathcal{H} = -\sum_{\langle i,j \rangle} J_{ij} S_i S_j \qquad S_i \in \{\pm 1\}$$

- Details about the model:
 - Nearest-neighbor interactions.

- Simulations usually done with periodic boundary conditions.
- Transition temperatures: $T_c = 0$ (2D), $T_c \sim I$ (3D), $T_c \sim 2$ (4D).
- Most studied spin-glass model to date.
- Disadvantages of the model:
 - Cannot be solved analytically.
 - In high space dimensions only small systems can be simulated $(D \ge 5 \text{ almost impossible}).$

Better: The one-dimensional Ising chain

• Tuning the power-law exponent changes the universality class.

Better: The one-dimensional Ising chain

• Tuning the power-law exponent changes the universality class.

Better: The one-dimensional Ising chain

• Tuning the power-law exponent changes the universality class.

Tuning the universality class

- Short-range spin glasses:
 - Upper critical dimension $d_u = 6$ (for $d \ge d_u$ MF behavior)
 - Lower critical dimension $d_{\rm l}$ = 2 (for $d \le d_{\rm l} T_{\rm c}$ = 0) $d_{\rm eff} \approx \frac{2}{2\sigma - 1}$
- Phase diagram of the ID chain:

Kotliar et al., PRB (83)

Tuning the universality class

- Short-range spin glasses:
 - Upper critical dimension $d_u = 6$ (for $d \ge d_u$ MF behavior)
 - Lower critical dimension $d_{\rm l}$ = 2 (for $d \le d_{\rm l} T_{\rm c}$ = 0) $d_{\rm eff} \approx \frac{2}{2\sigma - 1}$

• Phase diagram of the ID chain:

Kotliar et al., PRB (83)

Algorithms

Reminder: Exchange Monte Carlo

- Efficient algorithm to treat spin glasses at finite T.
- Idea:
 - Simulate *M* copies of the system at different temperatures with $T_{max} > T_c$ (typically $T_{max} \sim 2T_c^{MF}$).
 - Allow swapping of neighboring temperatures: easy crossing of barriers.

- Extremely fast equilibration at low temperatures.
- For the following applications we use this algorithm...

Hukushima & Nemoto (96)

Do spin glasses order in a field?

Spin-glass state in a field?

• Two possible scenarios:

- Replica Symmetry Breaking (RSB): existence of an instability line [Almeida & Thouless (78)] for the mean-field SK model.
- Droplet picture (DP): there is no spin-glass state in a field.

- The question lies at the core of theoretical descriptions.
 - Field terms are ubiquitous in applications/experiments.
 - Experimentally, numerically, and theoretically controversial.

Spin-glass state in a field?

• Two possible scenarios:

- Replica Symmetry Breaking (RSB): existence of an instability line [Almeida & Thouless (78)] for the mean-field SK model.
- Droplet picture (DP): there is no spin-glass state in a field.

- The question lies at the core of theoretical descriptions.
- Field terms are ubiquitous in applications/experiments.
- Experimentally, numerically, and theoretically controversial.

Spin-glass state in a field?

Outline:

- I. Tool to probe transition
- 2. Review of old 3D results
- 3. Improved results in ID

• Two possible scenarios:

- Replica Symmetry Breaking (RSB): existence of an instability line [Almeida & Thouless (78)] for the mean-field SK model.
- Droplet picture (DP): there is no spin-glass state in a field.

- The question lies at the core of theoretical descriptions.
- Field terms are ubiquitous in applications/experiments.
- Experimentally, numerically, and theoretically controversial.

Probing criticality: correlation length

Ballesteros et al. PRB (00)

- Use the finite-size correlation length to probe criticality in spin-glass systems:
 - Wave-vector-dependent connected spin-glass susceptibility:

$$\chi_{\rm SG}(\mathbf{k}) = \frac{1}{N} \sum_{ij} \left[\left(\langle S_i S_j \rangle_T - \langle S_i \rangle_T \langle S_j \rangle_T \right)^2 \right]_{\rm dis} e^{i\mathbf{k}(\mathbf{R}_i - \mathbf{R}_j)}$$

• Perform an Ornstein-Zernicke approximation:

$$[\chi_{\rm SG}(k)/\chi_{\rm SG}(0)]^{-1} = 1 + \xi_L^2 k^2 + \mathcal{O}[(\xi_L k)^4]$$

• Compensate for finite-size effects and periodic boundaries:

$$\xi_L = \frac{1}{2\sin(k_{\min}/2)} \left[\frac{\chi_{\rm SG}(0)}{\chi_{\rm SG}(k_{\min})} - 1\right]^{1/2}$$

- Finite-size scaling: $\frac{\xi_L}{L} = \tilde{X} \left(L^{1/\nu} [T T_c] \right)$
- Better than Binder ratio.

Probing criticality: correlation length

Ballesteros et al. PRB (00)

- Use the finite-size correlation length to probe criticality in spin-glass systems:
 - Wave-vector-dependent connected spin-glass susceptibility:

$$\chi_{\rm SG}(\mathbf{k}) = \frac{1}{N} \sum_{ij} \left[\left(\langle S_i S_j \rangle_T - \langle S_i \rangle_T \langle S_j \rangle_T \right)^2 \right]_{\rm dis} e^{i\mathbf{k}(\mathbf{R}_i - \mathbf{R}_j)}$$

• Perform an Ornstein-Zernicke approximation:

$$[\chi_{\rm SG}(k)/\chi_{\rm SG}(0)]^{-1} = 1 + \xi_L^2 k^2 + \mathcal{O}[(\xi_L k)^4]$$

• Compensate for finite-size effects and periodic boundaries:

$$\xi_L = \frac{1}{2\sin(k_{\min}/2)} \left[\frac{\chi_{\rm SG}(0)}{\chi_{\rm SG}(k_{\min})} - 1\right]^{1/2}$$

- Finite-size scaling: $\frac{\xi_L}{L} = \tilde{X} \left(L^{1/\nu} [T T_c] \right)$
- Better than Binder ratio.

Probing criticality: correlation length

Ballesteros et al. PRB (00)

- Use the finite-size correlation length to probe criticality in spin-glass systems:
 - Wave-vector-dependent connected spin-glass susceptibility:

$$\chi_{\rm SG}(\mathbf{k}) = \frac{1}{N} \sum_{ij} \left[\left(\langle S_i S_j \rangle_T - \langle S_i \rangle_T \langle S_j \rangle_T \right)^2 \right]_{\rm dis} e^{i\mathbf{k}(\mathbf{R}_i - \mathbf{R}_j)}$$

• Perform an Ornstein-Zernicke approximation:

$$[\chi_{\rm SG}(k)/\chi_{\rm SG}(0)]^{-1} = 1 + \xi_L^2 k^2 + \mathcal{O}[(\xi_L k)^4]$$

• Compensate for finite-size effects and periodic boundaries:

$$\xi_L = \frac{1}{2\sin(k_{\min}/2)} \left[\frac{\chi_{\rm SG}(0)}{\chi_{\rm SG}(k_{\min})} - 1\right]^{1/2}$$

- Finite-size scaling: $\frac{\xi_L}{L} = \tilde{X} \left(L^{1/\nu} [T T_c] \right)$
- Better than Binder ratio.

How well does this work for zero field?

Katzgraber et al., PRB (06)

How well does this work for zero field?

Katzgraber et al., PRB (06)

Katzgraber & Young, PRL (04)

Katzgraber & Young, PRL (04)

Katzgraber & Young, PRL (04)

Perform "slices" at different horizontal fields.

1.4

Katzgraber & Young, PRL (04)

Katzgraber & Young, PRL (04)

Katzgraber & Young, PRB (2005)

Katzgraber & Young, PRB (2005)

External field H = 0.10. 103 The data span a large = 0.65σ range of system sizes. 10² • The AT line vanishes outside the MF regime $(\sigma \ge 2/3).$ 10 32 64 128 △ 256 2/3 σ 1/20 1 SK MF non-MF d ∞ 2 0.1 0.3 0.5 0.7 0.4 0.6 0.8 0.9no AT AT T 3

Katzgraber & Young, PRB (2005)

- External field H = 0.10.
- The data span a large range of system sizes.
- The AT line vanishes outside the MF regime $(\sigma \ge 2/3).$

Katzgraber & Young, PRB (2005)

- External field H = 0.10.
- The data span a large range of system sizes.
- The AT line vanishes outside the MF regime $(\sigma \ge 2/3).$

Spin-glass state in a field?

- The AT line vanishes when not in the mean-field regime.
- For short-range spin glasses below the upper critical dimension:

- Does the behavior change for even larger system sizes?
- What happens for "narrow" AT lines? (see cond-mat/0712.2009)

Spin-glass state in a field?

- The AT line vanishes when not in the mean-field regime.
- For short-range spin glasses below the upper critical dimension:

- Does the behavior change for even larger system sizes?
- What happens for "narrow" AT lines? (see cond-mat/0712.2009)

Spin-glass state in a field?

- The AT line vanishes when not in the mean-field regime.
- For short-range spin glasses below the upper critical dimension:

- Does the behavior change for even larger system sizes?
- What happens for "narrow" AT lines? (see cond-mat/0712.2009)

Ultrametricity in spin glasses

What is ultrametricity?

• Formal definition:

- Given a metric space with a distance function.
- In general, the distance function obeys the triangle inequality: $d(\alpha, \gamma) \leq d(\alpha, \beta) + d(\beta, \gamma)$
- In an ultrametric space we have a stronger inequality: $d(\alpha,\gamma) \leq \max\{d(\alpha,\beta),d(\beta,\gamma)\}$

• Note:

- Every triangle is isosceles in an ultrametric space.
- Examples:
 - Linguistics (space where words differ)
 - Taxonomy (classification of species).
 - Number theory (p-adic numbers), ...

What is ultrametricity?

Outline: I. Definitions 2. Tools 3. Results

• Formal definition:

- Given a metric space with a distance function.
- In general, the distance function obeys the triangle inequality: $d(\alpha, \gamma) \leq d(\alpha, \beta) + d(\beta, \gamma)$
- In an ultrametric space we have a stronger inequality: $d(\alpha,\gamma) \leq \max\{d(\alpha,\beta),d(\beta,\gamma)\}$

• Note:

- Every triangle is isosceles in an ultrametric space.
- Examples:
 - Linguistics (space where words differ)
 - Taxonomy (classification of species).
 - Number theory (p-adic numbers), ...

Relevance to spin glasses (hand-waving...)

- Replica symmetry breaking solution of the mean-field model:
 - $F = -kT[\log Z]_{\text{av}} \qquad \log Z = \lim_{n \to 0} \left(\frac{Z^n 1}{n}\right) \quad \frac{\text{Parisi (79)}}{\text{Talagrand (06)}}$
- Order parameter: overlap function

$$q = \frac{1}{N} \sum_{i=1}^{N} S_i^{\alpha} S_i^{\beta} \qquad \qquad q = \frac{1}{N}$$

• After replication one obtains:

$$[\log Z]_{\rm av} \sim \int \prod_{\alpha,\beta} dQ_{\alpha\beta} e^{NG(Q_{\alpha\beta})}$$

• Typical structure:

$$Q_{\alpha\beta} = \frac{1}{N} \sum_{i=1}^{N} S_i^{(\alpha)} S_i^{(\beta)} =$$

• One can show that for three states in $Q_{\alpha\beta}$ with $q_{\alpha\gamma} \ge q_{\gamma\beta} \ge q_{\alpha\beta}$ one has $q_{\gamma\beta} = q_{\alpha\beta}$ in the thermodynamic limit.

What does it mean to be ultrametric?

• Simple test to see if the mean-field solution is applicable to a model:

- Ultrametricity is a cornerstone of the mean-field solution.
- If a model has no ultrametricity, the RSB solution is not valid for it.

• Current state of affairs:

- Are short-range models ultrametric? Very controversial!
- Many contradicting predictions.

• Problems:

- Only small short-range systems can be studied.
- The states for the test have to be selected very carefully.

Solution:

• Analysis of the ID chain [similar to Hed et al. (04)].

Hed et al., PRL (04)

and many more ...

Contucci et al., PRL (06)

Jörg & Krzakala, PRL (07)

Achtung! Problems when picking 3 states...

• Possible pitfalls:

I. If time-reversal symmetry is unbroken, one has to ensure that all three states used belong to the same "side" of phase space.

- 2. The temperature must be much smaller than T_c .
- 3. If the temperature is too small, for large systems most triangles are equilateral (carry no information). Do not study too low *T*'s.

Solutions:

- I. Can be avoided with a clustering analysis: Pick 3 states only from the left tree.
- 2. Simulations done at $T < T_c$, but not below $T = 0.2T_c$. Data shown for $T = 0.4T_c$.
- 3. To avoid equilateral triangles pick the 3 states from different branches in the left subtree (C_{1a} , C_{1b} , C_2). Next...

Hed et al., PRL (04)

Selection of states (similar to Hed et al.)

- Generation of states:
 - Equilibrate system.
 - Store 10³ states per realization.
- Selection of states:
 - Sorted dendrograms using Wards clustering method.
 - Pick left tree ("spin down").
 - Split left tree into $|C_1| \ge |C_2|$.
 - Split C_1 into C_{1a} and C_{1b} .
 - Pick three random states: $\alpha \in C_{1a}$, $\beta \in C_{1b}$, $\gamma \in C_2$.
- Distance matrix:
 - Darker colors mean closer distances $d_{\alpha\beta} = (1 q_{\alpha\beta})/2$.

Typical distance matrices at $T < T_c$

• Data for the ID chain, L = 512, $T = 0.4T_c$.

- Darker colors correspond to closer hamming distances.
- Both systems show structure at low temperatures.

Typical distance matrices at $T < T_c$

• Data for the ID chain, L = 512, $T = 0.4T_c$.

- Darker colors correspond to closer hamming distances.
- Both systems show structure at low temperatures.

Typical distance matrices at $T < T_c$

• Data for the ID chain, L = 512, $T = 0.4T_c$.

- Darker colors correspond to closer hamming distances.
- Both systems show structure at low temperatures.

How to measure ultrametricity

- Observable:
 - Select three states with the aforementioned recipe.
 - Compute the hamming distance between them: $d_{\alpha\beta} = (1 q_{\alpha\beta})/2$.
 - Sort the distances: $d_{\max} \ge d_{\min}$.

• Compute:
$$K = \frac{d_{\max} - d_{\text{med}}}{\rho(d)}$$

Here $\rho(d)$ is the width of the distance distribution.

- Signs of ultrametricity:
 - If the space is ultrametric, we expect $d_{\max} = d_{\mathrm{med}}$ for $N \to \infty$.
 - Study the distribution *P*(*K*). We expect:

$$P(K) \sim \delta(K=0) \qquad \qquad N \to \infty$$

How to measure ultrametricity

- Observable:
 - Select three states with the aforementioned recipe.
 - Compute the hamming distance between them: $d_{\alpha\beta} = (1 q_{\alpha\beta})/2$.
 - Sort the distances: $d_{\max} \ge d_{\min}$.

• Compute:
$$K = \frac{d_{\max} - d_{\text{med}}}{\rho(d)}$$

Here $\rho(d)$ is the width of the distance distribution.

• Signs of ultrametricity:

- If the space is ultrametric, we expect $d_{\max} = d_{\mathrm{med}} \;\; \text{for} \; N \to \infty$.
- Study the distribution *P*(*K*). We expect:

$$P(K) \sim \delta(K=0) \qquad N \to \infty$$

- Currently: try to determine the number of RSB layers and clusters.
- Similar results for other values of σ .

3

- Currently: try to determine the number of RSB layers and clusters.
- Similar results for other values of σ .

- Currently: try to determine the number of RSB layers and clusters.
- Similar results for other values of σ .

3

- Currently: try to determine the number of RSB layers and clusters.
- Similar results for other values of σ .

3

What else can we do with the ID chain?

Other ideas currently explored

- Study open problems in spin glasses:
 - Chaos, aging, universality, memory effect, ...
- Modifications of the model:
 - Spin symmetries (Potts, Heisenberg, ...).
 - p-spin model for structural glasses.
 - Power-law probability-diluted chain (huge systems).
- Benchmarking algorithms:
 - How does the algorithm scale with the size of the input (N)?
 - How does the scaling of the algorithm depend on the complexity/connectivity?
 - ID chain: range of the interactions (universality class) can be changed.

Other ideas currently explored

- Study open problems in spin glasses:
 - Chaos, aging, universality, memory effect, ...
- Modifications of the model:
 - Spin symmetries (Potts, Heisenberg, ...).
 Matsuda et al. (07)
 - p-spin model for structural glasses.
 - Power-law probability-diluted chain (huge systems).
- Benchmarking algorithms:
 - How does the algorithm scale with the size of the input (N)?
 - How does the scaling of the algorithm depend on the complexity/connectivity?
 - ID chain: range of the interactions (universality class) can be changed.

Examples: 1. diluted model 2. benchmarks

Probability-diluted Gaussian Ising chain

• Place a Gaussian random bond with $\mathcal{P}(J_{ij}
eq 0) \sim r^{-2\sigma}$

• Same behavior as the regular ID chain, but $[z]_{av} = 2\zeta(2\sigma)$.

 $\mathcal{H} = -\sum J_{ij} S_i S_j$

i < j Leuzzi, et al. (08)
Probability-diluted Gaussian Ising chain

• Place a Gaussian random bond with $\mathcal{P}(J_{ij}
eq 0) \sim r^{-2\sigma}$

• Same behavior as the regular ID chain, but $[z]_{av} = 2\zeta(2\sigma)$.

Note: Leuzzi et al. fix the connectivity (VB limit). Here SK limit.

 $\mathcal{H} = -\sum J_{ij} S_i S_j$

i < j Leuzzi, et al. (08)

Example: Hysteretic optimization

Zarand et al., PRL (02)

• Experiment:

- Do you have a CRT monitor or a non-LCD TV at home?
- Take a magnet and hold it to the screen.
- You are in trouble.
- Solution:
 - Call the technician.
 - Make a degaussing coil and slowly do circles around the TV increasing the radius and distance.
- You have just hysteretically (and possibly also hysterically) demagnetized the TV screen.

Example: Hysteretic optimization

Zarand et al., PRL (02)

• Experiment:

- Do you have a CRT monitor or a non-LCD TV at home?
- Take a magnet and hold it to the screen.
- You are in trouble.
- Solution:
 - Call the technician.
 - Make a degaussing coil and slowly do circles around the TV increasing the radius and distance.
- You have just hysteretically (and possibly also hysterically) demagnetized the TV screen.

Benchmarking: Hysteretic optimization

Zarand et al., PRL (02)

• Idea: Minimize the energy of a system by successive demagnetization.

Benchmarking: Hysteretic optimization

Zarand et al., PRL (02)

• Idea: Minimize the energy of a system by successive demagnetization.

Benchmarking: Hysteretic optimization

Zarand et al., PRL (02)

• Idea: Minimize the energy of a system by successive demagnetization.

New insights from one-dimensional spin glasses

New insights from one-dimensional spin glasses

- Summary:
 - Do short-range spin glasses order in a field? No.
 - Are short-range spin glasses ultrametric? Seems like it.
 - What does this mean? The mean-field solution works only for certain aspects.
- Advantages of the ID model:
 - Large systems can be studied.
 - The effective space dimension can be changed.
 - Benchmark model for optimization algorithms.

New insights from one-dimensional spin glasses

- Summary:
 - Do short-range spin glasses order in a field? No.
 - Are short-range spin glasses ultrametric? Seems like it.
 - What does this mean? The mean-field solution works only for certain aspects.
- Advantages of the ID model:
 - Large systems can be studied.
 - The effective space dimension can be changed.
 - Benchmark model for optimization algorithms.

thanks!