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Exchange vs parallel tempering

History:
The method was developed in 1996 by Hukushima and Nemoto. 
They called it “exchange Monte Carlo.”
Marinari & Parisi developed a similar method called simulated 
tempering and suggested a variation they dubbed “parallel tempering 
Monte Carlo”.
Recently, I discovered that Geyer presented another version in 91 in 
a proceedings book. So far, I could not get my hands on it...

Conundrum:
What should we call it?
Traditionally it is called “parallel tempering.”
Politically correct probably “exchange Monte Carlo.”
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Optimization problems
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Overview of optimization problems

Typical goals one usually wants to tackle: 
Minimize a cost function of a problem (e.g., calculate the ground-
state energy of a system).
Compute an observable (e.g., energy, magnetization, ...) at low 
temperature.

Typical optimization problems:
Physical, biological, chemical 
systems
k-SAT
NPP
Vertex cover problem
TSP, ...

(x11 OR x12 OR x13) AND (x21 OR x22 OR x23) AND...

TSP
VC

A = {a1, a2, . . . an} → A1 ∪ A2

∑

i∈A1

ai =

∑

i∈A2

ai

NPP

3-SAT
6



Optimization in physical systems

Several physical problems which contain randomness can be 
classified as (often hard) optimization problems.
Due to the randomness, one obtains competing interactions and thus 
a complex energy landscape.
Examples:

Spin glasses:

Structural glasses
Polymers in random media (interfaces)
Biomolecules (proteins, ...)

Quantum wave functions
Reconstruction of geological structures from
seismic measurements, ...

E

configuration space

H = −
∑

ij

JijSiSj

P(Jij) random
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What will be discussed here?

So far:
Methods to compute ground states of complex systems (zero-
temperature methods).
Methods to study phase transitions and overcome critical slowing 
down (for example cluster algorithms).
Methods to tackle systems which undergo first-order transitions 
(for example Wang-Landau algorithm).
Methods for infinite temperature (series expansions).

In this lecture:
Study systems with rough energy landscapes at low temperatures.
Introduction to exchange (parallel tempering) Monte Carlo.

temperature

GS Tc
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Simple benchmark model family

9



Prototype for a magnet: the Ising model

Hamiltonian:

Order parameter: 

Some properties:
Describes many magnetic systems (also other spin symmetries).
Exact solution in 2 space dimensions (Onsager).
Nearest-neighbor interactions, in 2D Tc ~2.27.

Tc T

m

H
Jij = 1 ∀i, j

m =
1

N

∑

i

Si

i != j

(magnetization)

“5x5”

H = −
∑

〈ij〉

JijSiSj − H
∑

i

Si

10



Adding frustration...

General Hamiltonian:

Introduce frustration between the spins:

Properties of the fully-frustrated Ising model:
Huge ground-state degeneracy and complex energy landscape.
Tc = 0 in 2D.
   

What happens if we add randomness to the frustration?

H = −
∑

〈ij〉

JijSiSj +J
−J

frustration
!

+

+

+?
++

+

+
ferromagnet fully-frustrated

∏
! Jij < 0 ∀ i, j
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Adding frustration and disorder: spin glass

Spin-glass Hamiltonian:

Details about the model:
Unconventional “order.”
Only mean-field solution.
Bimodal random bonds: high degeneracy.
Gaussian random bonds: unique ground state.
2D

 Tc = 0
3D

 Tc = 0.951(2)
4D

 Tc = 1.805(10)

Will be discussed in detail tomorrow and not discussed here further.

H = −
∑

〈i,j〉

JijSiSj Si ∈ {±1} P(Jij)

Jij+1−1

12



Reminder: Simple Monte Carlo
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The original Metropolis paper (1953)…

They knew this was important… and they were right!

Downloaded 06 Oct 2007 to 129.132.208.24. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The original Metropolis paper: some facts

50 years later at a Los Alamos meeting:
Only M. Rosenbluth attended, although 
with terminal cancer. 
Metropolis mainly contributed CPU
time on MANIAC.
von Neumann and Ulam invented the 
Monte Carlo method in 1946 and 
pointed out that it could be used for 
simulations.
Teller: Statistical averages can be made as ensemble averages.
Interesting author list: two couples. How often does this happen?

Why Los Alamos?
The US was bulding the atomic bomb. 
At least one good thing came out.

Phys. Plasmas 12, 057303 (05)

ENIAC

15



Reminder: simple Monte Carlo

In statistical mechanics we want to compute the average of an 
observable O:

Problem: The number of states is exponentially large.
Solution: Statistically sample a few (smartly chosen) states to obtain 
an estimate of O but with a statistical error.

If we chose the states according to       and ensure detailed 
balance we obtain a Markov chain for 

where M is the number of states sampled. 
Metropolis algorithm: accept a new configuration 

〈O〉 =

∑

n

P
eq

n
On P

eq

n =

eβEn

∑
n e−βEn

P
eq

n

〈O〉est

〈O〉est =
1

M

M∑

i

Oi

Paccept = min(1, e−∆E/T )

if(e−∆E/T > rand())

16



Why does simple Monte Carlo fail here?

The systems we are interested
in have rugged energy landscapes.
At low temperature, when 
is large

is “never” accepted.

How can we resolve the problem?
Tunnel trough barrier.
Heat up the system to overcome the barrier.

Note: 
Simulated annealing has similar problems (stuck in valleys).

Paccept = min(1, e−∆E/T )

∆E

17
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Exchange (parallel tempering) Monte Carlo
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Top 10 reasons to use exchange MC:
Hukushima & Nemoto (96)

top 10 reasons
to use

exchange 
Monte Carlo
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4. 
 It is practical (several T’s).
5. 
 Small numerical overhead.
6. 
 It is easy to parallelize.
7. 
 Wide application range.
8. 
 Mix with other algorithms.
9. 
 It is ‘Made in Japan.’ 
10.
 I told you so...

Hukushima & Nemoto (96)

top 10 reasons
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Exchange (parallel tempering) Monte Carlo

Idea: 
Simulate M copies of the system at different 
temperatures with Tmax > Tc (typically Tmax ~2TcMF).
Allow swapping of neighboring temperatures: 
easy crossing of barriers. 

What has to be tuned?
Number of temperatures.
Position of temperatures.

T
T

T

1
2

fa
st

slo
w

M

configuration space

E

T1 2

P(E)

ET

Hukushima & Nemoto (96)
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Parallel tempering: algorithm and details

Brief outline of the algorithm:
Perform a Monte Carlo update between neighboring replicas.
Best to keep temperatures and change pointers to configurations.

How often do we call the swap routine?
Optimal ratio of lattice sweeps (N spin updates) and swaps is 1:1, 
i.e., after each lattice sweep, perform an attempted parallel 
tempering swap [see Katzgraber et al., JSTAT P03018 (2006)].

P (Sm+1 ↔ Sm, βm+1 ↔ βm) = e−∆ : ∆ > 0

P (Sm+1 ↔ Sm, βm+1 ↔ βm) = 1 : ∆ ≤ 0

∆ =( βm+1 − βm)(Em − Em+1)

β = 1/T [obeys detailed balance]

21



How fast is fast? Example: 3D spin glass

Equilibration times:

Equilibration test (later):

Once both agree, the 
system is in equilibrium 
(only Gaussian disorder).

z = 2D

τ
PT
eq ≈ 300 MCS

τ
SM
eq ≈ 10

6
MCS

N = 43 spins
T = 0.5 Tc

equilibrium

Katzgraber et al. PRB (01)

simple MC

ql(E) =
2T |E|

z
+ 1
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How do we choose the temperatures?
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How many temperatures do we need?

Two possible scenarios:
Temperatures too far apart: parallel
simple Monte Carlo chains.
Temperatures too close: overhead.

What determines the number M of temperatures?
The energy distributions of the system at T1 and T2 have to 
overlap.
Because
Note: 
Systems for which                      require many 

 
 temperatures.

In principle, we need as many temperatures such that the method 
works. Measure? Acceptance rates.

T1 2

P(E)

ET

∆E ∼ CV M ∼
√

N1+α/dν

CV|T→0 → 0

Tmax ! TMF
c

24



Measuring acceptance rates

Definition:

Traditional wisdom:  Tune the temperature 
set such that...

... 0.2 ≤ A ≤ 0.9.

... A is approximately independent of temperature.

Detailed implementation which gives flat acceptance rates:
Incomplete beta function law [uses                  ].

Notes:
A quick run (no need to equilibrate) will immediately produce 
stable acceptance rates (easy tuning by hand).
It has been claimed that A ~ 0.3 is optimal.

good

T

A

bad

Tc

A = f(CV)
Predescu et al., JSTAT (03)

Rathore et al., J. Chem. Phys. (05)

A =
Naccept

Ntrial

25



Practical/traditional approaches

Geometric progression:
Works well when CV ~ const (like for spin glasses).
Iteratively construct a temperature set and tune M with   .

By hand:
If CV diverges (phase transition) start from a geometric 
progression.
Interlace extra temperatures by hand.
Tedious, but after a while you get a feeling for it.

But... are temperature-independent acceptance rates optimal?
Replicas do a random walk in temperature space.

1
Ti

= λRi−1 1
Tmin

λ

R =
[

Tmin

Tmax

]1/(M−1)

26



Optimizing the ensemble {Ti}

Track random walk of the replicas in temperature space...

Goal:
Minimize the round-trip time trt and ensure that tup ~ tdn.
This shall ensure an efficient sampling of temperature space.

How?
Tune the ensemble {Ti} at a fixed number of temperatures M.
Quick run at the beginning of the simulation.

Katzgraber et al., JSTAT (06)

trt
tT

T

min

max

upt dnt

27



Conventional temperature sets...

Start from a temperature set
with A(T) ~ const.
Track one replica and measure
the local diffusivity D in the 
ensemble {Ti}.

Ising model: 
Bottleneck at Tc!

Fully-frustrated Ising model:
Bottleneck at T = 0.

Goal: change {Ti} so that D ~ const. for each                           .∆Ti = Ti+1 − Ti

28
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Feedback method

Track replicas for Nt MCS and compute a histogram n(T) of the 
number of times a replica hits a given T.
Compute a histogram of directed walkers nup(T).
Calculate the fraction                                    [                              ].
Calculate {T’i} from {Ti}:

Choose C such that [T’min,T’max] maps back to [Tmin,Tmax]. Iterate!

Katzgraber et al., JSTAT (06)

Nt tT

T

min

max

f(T ) = nup(T )/n(T ) D(T ) = (df/dT )−1

1
∆T ′

i

= C

√
1

∆Ti

df

dTi
∼ 1√

∆TiD(Ti)

29



Feedback method

Track replicas for Nt MCS and compute a histogram n(T) of the 
number of times a replica hits a given T.
Compute a histogram of directed walkers nup(T).
Calculate the fraction                                    [                              ].
Calculate {T’i} from {Ti}:

Choose C such that [T’min,T’max] maps back to [Tmin,Tmax]. Iterate!

Katzgraber et al., JSTAT (06)

tT

T

min

max

f(T ) = nup(T )/n(T ) D(T ) = (df/dT )−1

1
∆T ′

i

= C

√
1

∆Ti

df

dTi
∼ 1√

∆TiD(Ti)

29



Feedback method

Track replicas for Nt MCS and compute a histogram n(T) of the 
number of times a replica hits a given T.
Compute a histogram of directed walkers nup(T).
Calculate the fraction                                    [                              ].
Calculate {T’i} from {Ti}:

Choose C such that [T’min,T’max] maps back to [Tmin,Tmax]. Iterate!

Katzgraber et al., JSTAT (06)

tT

T

min

max

f(T ) = nup(T )/n(T ) D(T ) = (df/dT )−1

1
∆T ′

i

= C

√
1

∆Ti

df

dTi
∼ 1√

∆TiD(Ti)

29



Feedback method: Ising model

Start from a geometric progression temperature set (not good!).
Feedback maximizes the rate of round trips.
Feedback reallocates resources where needed (critical point): 
Acceptance rates not constant.
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Feedback method: Ising model

Start from a geometric progression temperature set (not good!).
Feedback maximizes the rate of round trips.
Feedback reallocates resources where needed (critical point): 
Acceptance rates not constant.

5 iterationsUP

DOWN
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Evolution of the temperature set

Data for the Ising model.

After few iterations the
temperature set 
converges.
The method reallocates
more temperatures to
the bottlenecks.
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Feedback method: FFIM

Start from a geometric progression temperature set (not good!).
Feedback maximizes the rate of round trips.
Feedback reallocates resources where needed (ground state): 
Acceptance rates not constant.
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Feedback method: FFIM

5 iterations

Start from a geometric progression temperature set (not good!).
Feedback maximizes the rate of round trips.
Feedback reallocates resources where needed (ground state): 
Acceptance rates not constant.
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Comparison of fractions

In general, a “flat” [A(T) ~ const] temperature set is not too bad, but 
not optimal.
If Cv diverges, a geometrical progression is bad.

Ising model Fully frustrated model

33
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f
T [index]

Tmin Tmax
T

0

1

f

What happens for systems with disorder?

Problems:
We need to deal with averages.
Each fraction depends on the
given disorder configuration.
Each disorder configurations
converges independently...
The round-trip times are fat
tail distributed.
Each disorder realization has
its own temperature set.

Solution:
Fortunately Cv ~ const. and a “flat” temperature set is close to 
optimal “on average.”

3D spin glass
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The round-trip times are fat
tail distributed.
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its own temperature set.

Solution:
Fortunately Cv ~ const. and a “flat” temperature set is close to 
optimal “on average.”

3D spin glass

Do not use for
glasses...
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Simulations in (bio)chemistry

Hansmann & Trebst, (07)

A

B
C

A

B

C

Example: Protein A

It can happen that the replicas will only move in subspaces of the 
phase space (A, B, C).
Feedback optimization helps overcome these problems easily.
Simulations otherwise impossible.
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Simulations in (bio)chemistry

Hansmann & Trebst, (07)

A

B
C

A

B

C

Example: Protein A

It can happen that the replicas will only move in subspaces of the 
phase space (A, B, C).
Feedback optimization helps overcome these problems easily.
Simulations otherwise impossible.

Use for biology
applications...
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Some final thoughts (and extensions)...
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Heuristic ground state search

Outline of the algorithm:
Perform an exchange MC run with Tmin close to zero.
Simulate two copies of the system with different Markov chains.
The system is in thermal equilibrium:

after each lattice sweep record the spin configuration and 
energy for the lowest T if these match in both copies. 
If a lower energy is found, replace the previously recorded 
energy.

Measure for 1/4teq.

For small to intermediate system sizes where other algorithms do 
not work well the method provides heuristic ground states with high 
probability (98% up).
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Extensions and combinations

Any control variable can be used:
Field
Temperature and field
Coupling constants in QCD
Frequencies (e.g., in a Holstein model)
...

Combinations with other algorithms possible:
Exchange Monte Carlo molecular dynamics (biomolecules).
Exchange quantum Monte Carlo (quantum spin glasses).
Bayensian periodigram (planet search in star systems).
Iterative search methods (combinatorial problems).
Cluster exchange Monte Carlo (diluted spin glasses).
...
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Thank you.
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