Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

Martin Hasenbusch

ITP, Universität Leizig

4 April 2008

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

Overview

M. Hasenbusch, A. Pelissetto, E. Vicari, J. Stat. Mech. (2008) L02001 [arXiv:cond-mat/0710.1980]

- Definition of the models and the observables
- Summary of results given in the literature
- Corrections to scaling and the Renormalization Group
- Our Monte Carlo simulations
- Conclusions

We study a simple cubic lattice with periodic boundary conditions in 3 dimensions. The Hamiltonian of the Edwards-Anderson model is given by

$$H = -\sum_{\langle xy \rangle} J_{\langle xy \rangle} s_x s_y$$

with $s_x \in \{-1, 1\}$. (As in the lsing model). Here, the coupling constants $J_{\langle xy \rangle}$ are quenched uncorrelated random variables

- ▶ The ±J model: $J_{\langle xy \rangle} \in \{-1, 1\}$ with P(1) = 1 P(-1) = pWe have simulated p = 0.5 and p = 0.7.
- ▶ $\pm J$ model with bond dilution: $J_{\langle xy \rangle} \in \{-1, 0, 1\}$ with probabilities $P(-1) = (1 p)p_b$, $P(0) = (1 p_b)$, and $P(1) = pp_b$. We have simulated p = 0.5 and $p_b = 0.45$.
- Preliminary results for Gaussian distribution of J_{<xy>}.

(4月) トイヨト イヨト

Phase diagram of the $\pm J$ model

 $p_{MGP} = 0.76820(4), 2p - 1 = \tanh(J/T)$

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

The observables

Expectation value for a given set of coupling constants:

$$\langle A \rangle_{\{J\}} := \frac{\sum_{\{s\}} \exp\left(-\beta H(\{J\}, \{s\})\right) A(\{J\}, \{s\})}{\sum_{\{s\}} \exp\left(-\beta H(\{J\}, \{s\})\right)}$$

Overlapp variables are needed for the study of the glass transition:

$$q_x = s_x^{(1)} s_x^{(2)}$$

 $s_{x}^{(1)}$ and $s_{x}^{(2)}$ are the spins of two statistically independent configurations for the same set of coupling constants $J_{\langle xy \rangle}$.

Expectation value of overlapp observables for a given set of coupling constants:

$$\begin{split} \langle B \rangle_{\{J\}} &:= \\ \frac{\sum_{\{s^{(1)}\}, \{s^{(2)}\}} \exp\left(-\beta [H(\{J\}, \{s^{(1)}\}) + H(\{J\}, \{s^{(2)}\})]\right) \ B(\{J\}, \{q\})}{\sum_{\{s^{(1)}\}, \{s^{(2)}\}} \exp\left(-\beta [H(\{J\}, \{s^{(1)}\} + H(\{J\}, \{s^{(2)}\}])\right)} \end{split}$$

Average over all sets of couplings:

$$[F(\langle A \rangle_{\{J\}}, \langle B \rangle_{\{J\}}, \ldots)] := \frac{\sum_{\{J\}} [\prod_{\langle xy \rangle} p(J_{\langle xy \rangle})] F(\langle A \rangle_{\{J\}}, \langle B \rangle_{\{J\}}, \ldots)}{\sum_{\{J\}} \prod_{\langle xy \rangle} p(J_{\langle xy \rangle})}$$

Very useful for Finite Size Scaling (FFS): Renormalization Group invariant quantities

Cumulants:

$$U_4 = \frac{[\mu_4]}{[\mu_2]^2} \qquad \qquad U_{22} = \frac{[\mu_2^2] - [\mu_2]^2}{[\mu_2]^2}$$

with
$$\mu_k = \langle (\sum_x q_x)^k \rangle$$

Second moment correlation length over the linear lattice size L:

$$R_{\xi} = \xi_{2nd}/L$$

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

A D > A D >
 A

Overlapp susceptibility

$$\chi = \frac{1}{V} [\mu_2]$$

Fourier transform of the correlation function at lowest non-vanishing momentum

$$F = \frac{1}{V} \sum_{x,y} \langle q_x q_y \rangle \cos(2\pi (y_1 - x_1)/L)$$

$$\xi_{2nd} = \frac{1}{2\sin(\pi/L)} \left(\frac{\chi}{F} - 1\right)^{1/2}$$

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

Martin Hasenbusch

< ≣⇒

RG invariant quantities like U_4 or R_ξ behave close to T_c as $R = R^* + a(\beta - \beta_c)L^{1/\nu} + cL^{-\omega} + \dots$

 \rightarrow Binder crossing method to find T_c

 \rightarrow determine ν from slope at T_c

Example: 3D Ising model simple cubic lattice $\sum_{k=1}^{3.0} \sum_{l=2}^{2.5} \sum_{l=2}^{L=3} \sum_{l=2}^{L=3} \sum_{l=2}^{2.5} \sum_{l=2}^{L=3} \sum_{l=2}^{L=3} \sum_{l=2}^{2.5} \sum_{l=2}^{L=3} \sum_{l=2}^{2.5} \sum_{l=2}^{L=3} \sum_{l=2}^{2.5} \sum_{l=2}^{L=3} \sum_{l=2}^{2.5} \sum_{l=2}^{2.$

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

Our implementation of FSS:

 $R_{\xi}(L,\beta_f(L))=R_{\xi,f}$

with $R_{\xi,f} \approx R_{\xi}^*$ defines $\beta_f(L)$. Quantities are analysed at $\beta_f(L)$:

$$\beta_f = \beta_c + a^{-1} (R_{\xi,f} - R_{\xi}^* - cL^{-\omega}) L^{-1/\nu} + \dots$$

$$U_4(R_f) = U_4^* + \frac{a_U}{a_R}(R_{\xi,f} - R_{\xi}^*) + (c_u - \frac{a_U}{a_R}c_R)L^{-\omega} + \dots$$

= $\bar{U}_4^* + \bar{c}_u L^{-\omega} + \dots$

$$\frac{\partial R}{\partial \beta}\Big|_{\beta=\beta_f} = \bar{a}L^{1/\nu} \times (1 + \bar{c}L^{-\omega} + ...) \qquad \qquad \chi(\beta_f) = \bar{b}L^{2-\eta}(1 + ...)$$

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

A D > A A >

Results for $\pm J$ model at p = 0.5 taken from H. Katzgraber, M. Körner, and A. P. Young, Phys. Rev. B **73**, 224432 (2006).

authors	year	T _c	ν	η
Ogielski, Morgenstern	1985	1.20(5)	1.2(1)	
Ogielski	1985	1.175(25)	1.3(1)	-0.22(5)
Singh, Chakravarty	1986	1.2(1)	1.3(2)	
Bhatt, Young	1985	1.2(2)	1.3(3)	-0.3(2)
Kawashima, Young	1996	1.11(4)	1.7(3)	-0.35(5)
Bernardi et al	1996	1.165(10)		-0.245(20)
Berg, Janke	1998	1.12(1)		-0.37(4)
Palassini, Caracciolo	1999	1.156(15)	1.8(2)	-0.26(4)
Mari, Campbell	1999	1.20(1)		-0.21(2)
Ballesteros et al.	2000	1.138(10)	2.15(15)	-0.337(15)
Mari, Campbell	2001	1.190(15)		-0.20(2)
Mari, Campbell	2002	1.195(15)	1.35(10)	-0.225(25)
Nakamura et al	2003	1.17(4)	1.5(3)	-0.4(1)
Pleimling, Campbell	2005	1.19(1)		-0.22(2)
Katzgraber et al.	2006	1.120(4)	2.39(5)	-0.395(17)
our result	2007	1.101(5)	2.53(8)	-0.384(9)

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

Estimates for ν from different quantities differ quite a lot:

E.g. FSS (finite size scaling), Katzgraber et al. (Using power law ansätze without corrections):

- ► 2.39(5) from <u>*ξ*/L</u>
- ▶ 2.79(11) from the Binder Cumulant
- 1.57(3) from the slope of χ

 \Rightarrow Have to understand corrections to scaling

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

The singular part of the free energy

 $f(\beta, h, L) = L^{-d} f_{s}(u_{t} L^{y_{t}}, u_{h} L^{y_{h}}, u_{3} L^{y_{3}}) + f_{ns}(\beta, h)$

where u_t , u_h and u_3 are non-linear scaling fields: $u_t = t + ah^2 + ...$ and $u_h = h + bth + ...$ where $t = \beta - \beta_c$. For h = 0:

$$\chi = \frac{\partial^2 f}{\partial h^2} = L^{-d} (f_s^{(0,2)} L^{2y_h} (1 + 2bt + ...) + ...)) + f_{ns}^{(0,2)}$$

$$\frac{\partial \chi}{\partial \beta} = L^{-d} (f^{(1,2)} L^{2y_h + y_t} (1 + ...) + 2bf^{(0,2)} L^{2y_h} (1 + ...) + ...) + f^{(1,2)}_{ns}$$

$$\propto L^{2y_h+y_t-d}(1+cL^{-y_t}+...)$$

The derivatives of ξ/L and the Binder cumulant with respect to β at β_c do not suffer from corrections $\propto L^{-y_t}$

The simulation

- Local Metropolis updates
- Multispin coding implementation (64 systems run in parallel, same random number for all systems)
- Random exchange method (Parallel tempering)
- Avoid bias in quantities like $[\langle A \rangle \langle B \rangle]$...
- Careful check of equilibration: double lenght of the equilibration time until results are consistent within errors
- We compute the Taylor expansion of the observables up to 2nd order

In total about 30 years of a single core 2.4 GHz Opteron CPU.

Compute a table with two entries:

```
for(ite=0;ite<NTEMP;ite++)
{
    pp[ite][0]=exp(-4.*beta[ite]);
    pp[ite][1]=exp(-8.*beta[ite]);
    }
/* metropolis routine for 2D system */
void metro(int l1,int l2)
{</pre>
```

```
long int p1,p2,p3,p4;
long int jj1,jj2,ii1,ii2,ido;
int i0,is0,iq0,i1,is1,iq1;
```

double xxrr;

```
for(i0=0;i0 < L0;i0++)</pre>
  ł
  iq0=i0-1; if(i0==0) iq0=L0-1; is0=i0+1; if(is0==L0) is0=0
  for(i1=0:i1 < L1:i1++)</pre>
    ł
    iq1=i1-1; if(i1==0) iq1=L1-1; is1=i1+1; if(is1==L1) is
    xxrr=genrand_res53();
    if(xxrr<pp[11][1]) {spins[11][12][i0][i1]=~spins[11][1]
    else
      p1=link[iq0][i1][0]^spins[11][12][i0][i1]^spins[11][
      p2=link[i0][i1][0]^spins[11][12][i0][i1]^spins[11][1]
      p3=link[i0][iq1][1]^spins[11][12][i0][i1]^spins[11][
      p4=link[i0][i1][1]^spins[11][12][i0][i1]^spins[11][1]
```

```
if(xxrr<pp[11][0])
    ł
    /* check that at least one bond is not satisfied *
    ido=p1|p2|p3|p4;
   spins[11][12][i0][i1]=ido^spins[11][12][i0][i1];
    }
 else
    /* check that at least two bonds are not satisfied
    ii2=p1&p2; ii1=p1^p2;
    jj2=p3&p4; jj1=p3^p4;
    ido=ii2|jj2|(ii1&jj1);
    spins[11][12][i0][i1]=ido^spins[11][12][i0][i1];
    }
  }
}
```

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

æ

・ロト ・回ト ・ヨト ・ヨト

Avoiding bias

$$\bar{A}_{N,j} pprox rac{1}{N} \sum_{i=1}^{N} A_{i,j}$$

$$\lim_{M \to \infty} \frac{1}{M} \sum_{j=1}^{M} \bar{A}_{N,j} \bar{B}_{N,j} \neq [\]$$

Solution:

$$\bar{A}_{N/2,1,j} \approx \frac{1}{N} \sum_{i=1}^{N/2} A_{i,j} \qquad \bar{B}_{N/2,2,j} \approx \frac{1}{N} \sum_{i=N/2+1}^{N} B_{i,j}$$

then

$$\lim_{M \to \infty} \frac{1}{M} \sum_{j=1}^{M} \bar{A}_{N/2,1,j} \bar{B}_{N/2,2,j} = [\langle A \rangle \langle B \rangle]$$

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

Fixed ratio for length of thermalization, measurement and decorrelation: $N_t = 20N_m$, $N_d = N_m$;

Thermalization	Measurement/ Decorrelation

In our simulation: 12 measurement intervals to compute ... [< A > < E > < E >] up to [< A > < B > < E > < E >]

Thermalization and Decorrelation errors are simultaneously checked by doubling N_m until all observables studied are independent of N_m (within stat. errors) The Models

L	samples/64	MC sweeps	Nt	CPU-time/days
8	100000	19200	5	4
9	110850	48000	8	27
10	100681	72000	8	50
11	109779	144000	10	183
12	106812	192000	10	308
13	38282	288000	10	210
14	31600	480000	10	361
16	24331	480000	20	831
20	1542	1920000	32	658
24	717	3000000	32	826
28	285	7200000	20	782

Effort grows roughly $\propto L^9$.

Compare with Katzgraber et al: Number of samples: 30000,15807,11360,9408,8416 for L = 8, 12, 16, 20, 24 respectively. • • • • •

æ

Image: A (1)

Conclusion from various fits: $\omega = 1.0(1)$

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

Spin-glass transition in the three-dimensional EAI model: universality and scaling corrections

Martin Hasenbusch

ł

(日)

The Models	Results from the Literature	Analytic Corrections	Numerical Results	Conclusions
	Very small corrections	in the case of U_4		

Strong corrections in the case of ξ/L; crossing points move to larger values of β and ξ/L as L increases
 Including corrections with ω = 1 we get β_c consistent with that obtained from U₄

Our final results (From data with $L \ge 8$):

 $U_4^* = 1.490(7), \ \xi/L^* = 0.654(7), \ \beta_c = 0.908(4)$ for p = 0.5.

Ansatz: $R' = L^{1/\nu} (1 + cL^{-\omega})$

Conclusions

- In some quantities $1/\nu$ corrections are leading!
- U_4 at ξ/L fixed is the same for all three models
- $\omega = 1.0(1)$
- ▶ $\nu = 2.53(8), \ \eta = -0.384(9)$

< 67 b