
Quantum Fluctuations in Simplicial Gravity

Andrzej Görlich

Institute of Physics, Jagiellonian University, Kraków

Leipzig, April 3, 2008

Andrzej Görlich Quantum Fluctuations in Simplicial Gravity



Outline

1 Path integral formulation of Quantum Gravity
2 Causal Dynamical Triangulations
3 Background spacetime
4 The Minisuperspace Model
5 Quantum fluctuations
6 The Sturm-Liouville Operator
7 Conclusions

Andrzej Görlich Quantum Fluctuations in Simplicial Gravity



Path integral formulation of Quantum Gravity

The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by
the Einstein-Hilbert action.

To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.

The path integral is written as a nonperturbative sum over all
causal triangulations T .

Wick rotation is well defined due to proper time foliation.

Using Monte Carlo techniques we can calculate expectation
values of observables.

Z =

∫ DM[g ]

DiffM
e iS
EH [g ]

→ Z =
∑
T

1
s(T )

e iS
Regge [g ]

Causal Dynamical Triangulations (CDT) is a background
independent approach to quantum gravity.
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The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by
the Einstein-Hilbert action.

To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.

The path integral is written as a nonperturbative sum over all
causal triangulations T .

Wick rotation is well defined due to proper time foliation.

Using Monte Carlo techniques we can calculate expectation
values of observables.

Z =

∫ DM[g ]

DiffM
e−S

E [g ]
→ Z =

∑
T

1
s(T )

e−S
E [g ]

Causal Dynamical Triangulations (CDT) is a background
independent approach to quantum gravity.
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Dynamical Triangulations

A manifold with topology S3 × S1 . . .
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Dynamical Triangulations

. . . is discretized by gluing 4-simplices - triangulation
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Causal Dynamical Triangulations

The spatial slices (of constant time) . . .
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Causal Dynamical Triangulations

. . . have S3 topology
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

Lengths of the time and space links are constant. Simplices
have a fixed geometry.

The metric is flat inside each d-simplex.

The angle deficit (curvature) is localized at
(d − 2)-dimensional sub-simplices.

0D simplex - point
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

Lengths of the time and space links are constant. Simplices
have a fixed geometry.

The metric is flat inside each d-simplex.

The angle deficit (curvature) is localized at
(d − 2)-dimensional sub-simplices.

2D simplex - triangle
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

Lengths of the time and space links are constant. Simplices
have a fixed geometry.

The metric is flat inside each d-simplex.

The angle deficit (curvature) is localized at
(d − 2)-dimensional sub-simplices.

3D simplex - tetrahedron
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

Lengths of the time and space links are constant. Simplices
have a fixed geometry.

The metric is flat inside each d-simplex.

The angle deficit (curvature) is localized at
(d − 2)-dimensional sub-simplices.

4D simplex - 4-simplex
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

Lengths of the time and space links are constant. Simplices
have a fixed geometry.

The metric is flat inside each d-simplex.

The angle deficit (curvature) is localized at
(d − 2)-dimensional sub-simplices.

4D simplex, two types in CDT

Andrzej Görlich Quantum Fluctuations in Simplicial Gravity



Monte Carlo simulations - Alexander moves

We construct a starting space-time manifold with given topology
(S3 × S1) and perform a random walk over configuration space.

Ergodicity In the dynamical triangulation approach all possible
configurations are generated by the set of Alexander moves.

Fixed topology The moves don’t change the topology.
Causality Only moves that preserve the foliation are allowed.
4D CDT We have 4 types of moves.

Examples in 2D
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Causal Dynamical Triangulation - properties

Manifolds are approximated by simplicial manifolds.

Sum over triangulations (gluings).

By construction we have foliation in proper time. We do not
allow the spatial slices to change topology.

Wick rotation is well defined.

Such formulation involves only geometric invariants like length
and angles.

We don’t introduce coordinates.

Manifestly diffeomorphism-invariant.
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Path integral - The action

We generate a large number of such configurations with
the probability

P[configuration] ∝ e−S

We use Einstein-Hilbert action . . .

S = − 1
G

∫
dt
∫
dΩ
√

g(R − 6λ)

G gravitational constant

λ cosmological constant

g determinant of a spacetime
metric

R scalar curvature
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Path integral - The action

We generate a large number of such configurations with
the probability

P[configuration] ∝ e−S

. . . or the Regge action in the discrete version

S = −K0N0 + K4N4 + ∆(N14 − 6N0)

N0 number of vertices

N4 number of simplices

N14 number of simplices of type
{1, 4}

K0 K4 ∆ bare coupling constants
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Background

For a certain range of bare coupling constants, a typical
configuration has a ”bloblike” shape and behaves as a well
defined four-dimensional manifold.
This isn’t trivial. In the Euclidean version, without imposed
causality, one either got

a ”crumpled phase” with infinite Hausdorff dimension
or
a ”branched polymer phase” dominated by spacetimes where
the 4-simplices form treelike structures with Hausdorff
dimension two,

even though they are built from 4D simplices. Unfortunately,
the phase transition between them is of the 1st order.

Andrzej Görlich Quantum Fluctuations in Simplicial Gravity



Background

For a certain range of bare coupling constants, a typical
configuration has a ”bloblike” shape and behaves as a well
defined four-dimensional manifold.
This isn’t trivial. In the Euclidean version, without imposed
causality, one either got

a ”crumpled phase” with infinite Hausdorff dimension
or
a ”branched polymer phase” dominated by spacetimes where
the 4-simplices form treelike structures with Hausdorff
dimension two,

even though they are built from 4D simplices. Unfortunately,
the phase transition between them is of the 1st order.

Andrzej Görlich Quantum Fluctuations in Simplicial Gravity



Background

For a certain range of bare coupling constants, a typical
configuration has a ”bloblike” shape and behaves as a well
defined four-dimensional manifold.
This isn’t trivial. In the Euclidean version, without imposed
causality, one either got

a ”crumpled phase” with infinite Hausdorff dimension
or
a ”branched polymer phase” dominated by spacetimes where
the 4-simplices form treelike structures with Hausdorff
dimension two,

even though they are built from 4D simplices. Unfortunately,
the phase transition between them is of the 1st order.

Andrzej Görlich Quantum Fluctuations in Simplicial Gravity



Background

For a certain range of bare coupling constants, a typical
configuration has a ”bloblike” shape and behaves as a well
defined four-dimensional manifold.
The averaged spatial volume v̄(t) is proportional to
cos3(t/B).
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Background - classical solution

Such behaviour of the average volume occurs when we
assume spatial homogeneity and isotropy.

We ”freeze” all degrees of freedom except the volume (scale
factor).

We introduce the following metric on S3 × S1 spacetime

ds2 = dt2 + v2/3(t)dΩ23

In this particular case, the Einstein-Hilbert action

S =
1
G

∫
dt
∫
dΩ
√

g(R − 6λ)
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Background - classical solution

Such behaviour of the average volume occurs when we
assume spatial homogeneity and isotropy.

We ”freeze” all degrees of freedom except the volume (scale
factor).

We introduce the following metric on S3 × S1 spacetime

ds2 = dt2 + v2/3(t)dΩ23

In this particular case, the Einstein-Hilbert action
takes form

S =
1
G

∫
v̇2

v
+ v

1
3 − λvdt
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Minisuperspace

The classical trajectory v̄(t) ∝ cos3(t/B) is perfectly recovered
in this model.

Question?

How well does the minisuperspace model describe the quantum
fluctuations computed from Monte Carlo simulations?

The minisuperspace action

S =
1
G

∫
v̇2

v
+ v

1
3 − λvdt
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The potential

Restricting our considerations to the volume v(t) we reduce
the problem to one-dimensional quantum mechanics.

The minisuperspace action describes a motion of a particle in
a potential:

-3000

-2000

-1000

0

1000

0 2000 4000 6000 8000

U
(v
)

v

U(v)

U(v)=−v
1
3+λv

0

2000

4000

6000

8000

10000

-40 -30 -20 -10 0 10 20 30 40

v̄
(t
)

t

Andrzej Görlich Quantum Fluctuations in Simplicial Gravity



The regularized potential - bounce

Restricting our considerations to the volume v(t) we reduce
the problem to one-dimensional quantum mechanics.

The minisuperspace action describes a motion of a particle in
a potential:
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Quantum fluctuations - semiclassical approximation

The spatial volume fluctuations are described by a Hermitian
Sturm-Liouville operator D(t).

S [v = v̄ + x ] ≈ S [v̄ ] +
1
2

∫
x(t)D(t)x(t)dt

D(t) = −∂t
1

v̄(t)
∂t +

∂2U
∂v2

∣∣∣
v=v̄

For a discrete time it is a matrix Mtt′

S [v = v̄ + x ] ≈ S [v̄ ] +
1
2

∑
t,t′

xtMtt′xt′

xtMtt′xt′ = c1
∑
t

(xt+1 − xt)2

v̄t
+
∂2U
∂v2

∣∣∣
v=v̄

x2t

Can we recover the matrix Mtt′ from simulations?
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Propagator vs action

There exists a direct relationship between the propagator -
fluctuation correlation matrix - and the matrix M

Ctt′ = 〈xtxt′〉 =
1
Z

∫
xtxt′e

− 12
∑
t,t′ xtMtt′xt′

∏
s
dxs = M−1tt′

The propagator C can be measured. xt = vt − v̄t .

The average is computed over configurations generated by
Monte Carlo algorithm - path integral.
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The propagator C

Ctt′ = 〈xtxt′〉

How does it look like?
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The Sturm-Liouville operator M

M = C−1

How does it look like?
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M matrix decomposition

Analysing the matrix M row by row we can find the
kinetic kt and potential ut coefficients.

This allows us to compare the theoretical predictions
with numerical data.

We expect that v̄t ≈ c1kt and ut ≈ −U ′′(v̄t).

t2k + ut

−k −kt t

xtMtt′xt′

c1
∑
t

(xt+1 − xt)2

v̄t
−U ′′(v̄t)x2t =

∑
t

kt(x2t+1+ x2t − 2xtxt+1) + utx2t
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The kinetic part

Coefficients kt fully agree with the predictions

v̄t =
c1
kt

The kinetic part
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The kinetic part

Coefficients kt fully agree with the predictions

v̄t =
c1
kt

The constant c1 doesn’t depend on the total volume.

We can relate the cut-off with the gravitational constant G ,
which is responsible for the fluctuation amplitude.

G = const
a2

c1

The Universe built of 362000 simplices has a radius of about
20 Planck lengths.
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The potential part

The coefficients ut also agree with the regularized potential

ut ≈ −U ′′(v̄t)

Potential well - U ′′(v(t)) plot
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The potential part

If the model is correct, U ′′(v) should be universal and not
depend on total volume. The ”cosmological constant” λ
controls the volume, but it gives no contribution to U ′′(v).

The numerical results are in full agreement with the
regularised potential.
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Eigenvectors

Eigenvectors of the numerical matrix C and theoretical matrix
M are very similar.

The eigenvectors of C i M
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Conclusions

1 We observe a four-dimensional universe with well defined time
and space extension.

2 The background geometry exactly corresponds to the classical
solution of the minisuperspace model (classical Einstein
theory).

3 Quantum fluctuations are properly described by this simple
model.

4 The gravitational constant G controls the fluctuation
amplitude. We may estimate that the Universe built of 362000
simplices has a radius of about 20 Planck lengths.

5 The minisuperspace model correctly predicts the eigenvectors
of the propagator.
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