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Self-averaging

Physical observables φ should be averaged over thermal
fluctuations AND disorder realizations. Using Bertrand’s notations

〈φ〉 =

∫

D[Kij ]P[Kij ]〈φ〉[Kij ]

=

∫

D[Kij ]P[Kij ]

∫

D[σi ]φ[σi ]
e−βH[Kij ,σi ]

Z[Kij ]
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Self-averaging (2)

〈φ〉Kij
is a random variable (fluctuates from sample to sample) with

probability distribution :

℘(φ) =

∫

D[Kij ]P[Kij ]δ
(

φ − 〈φ〉[Kij ]

)

and average

〈φ〉 =

∫

φ ℘(φ)dφ

Naive assumption: when the system size tends to ∞, all disorder
realizations become equivalent, i.e.

℘(φ) ∼ 1√
2πσ2

e−(φ−〈φ〉)2/2σ2 −→ δ(φ − 〈φ〉)
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Self-averaging (3)

Sample-to-sample fluctuations should vanish

Rφ =
〈φ〉2 − 〈φ〉2

φ
2

−→ 0

according to the central limit theorem.

Wiseman and Domany (1995) observed that it is not true: Rm and
Rχ tend to finite values in the thermodynamic limit !

m and χ are examples of non self-averaging quantities.
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Self-averaging (4)
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Self-averaging (5)

Aharony, Harris and Wiseman (1998) showed that

Stable random fixed point: (non self-averaging)

Rφ(L) ∼ Rφ(∞) + A L(α/ν)rand.

Rφ(∞) is a universal value.

Unstable random fixed point, i.e. α < 0: (weak self-averaging)

Rφ(L) ∼ Lα/ν

Out of the critical point (self-averaging)

Rφ(L) ∼ L−d
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Rare events

The average is dominated by rare events. Average and typical
values are different.
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Rare events (2)

The distribution ℘(φ) displays a long tail:
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Impossibility of numerical simulations?
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The Ising chain

−βH =
∑

i

Kiσiσi+1, (σi ∈ {−1; +1})

Spin-spin correlation function for a given disorder realization

〈Gσσ(i , j)〉 = 〈σiσj〉 =

j−1
∏

k=i

tanhKk
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The Ising chain (2)

If the Kk are uncorrelated independent random variables, the
central limit theorem applies to the sum

ln〈Gσσ(i , j)〉 =

j−1
∑

k=i

ln tanhKk

leading to (|i − j | ≫ 1)

℘ (ln〈Gσσ(i , j)〉 = lnC ) ∼ 1√
2πσ2

e−(lnC−ln C)2/2σ2
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The Ising chain (3)

Typical

G typical
σσ (i , j) = e |j−i |ln tanhK = e ln〈Gσσ(i ,j)〉

and average values

〈Gσσ(i , j)〉 =

∫

ex℘(x)dx = e |j−i | ln tanhK ≫ G typical
σσ (i , j)

are different (Derrida, 1981). Rare events: large number of strong
couplings.
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The Ising chain (3)

One can define two different correlation lengths

lnG typical
σσ (r) ∼ − r

ξtypical
, ln 〈Gσσ(r)〉 ∼ − r

ξavg

with different critical behavior

ξtypical ∼ |T − Tc |−νtypical

, ξavg ∼ |T − Tc |−νavg

The stability of the random fixed point imposes νavg ≥ 2/d but
νtypical can violate this constraint.
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Multifractality
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Multifractality (2)

For a self-averaging quantity, for instance a Gaussian distributed
random variable, the cumulants satisfy the recursion relation (Wick
Theorem)

(φ − φ)n =
1√

2πσ2

∫ +∞

−∞
dφ (φ − φ)ne−(φ−φ)2/2σ2

= (n − 1)σ2(φ − φ)n−2

The scaling dimension xφ(n) of (φ − φ)n
1/n

is thus

xφ(n) = xφ(2) = xφ
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Perturbative results

Replica trick

F = −lnZ = − lim
p→0

1

p

[

Zp − 1
]

For disorder m(~r) coupled to the energy density ǫ(~r)

Zp =

∫

D[φ1(~r)] . . .

∫

D[φp(~r)] e−
Pp

α=1(H0[φα]+
P

~r m(~r)ǫα(~r))

≃
∫

D[φ1(~r)] . . .

∫

D[φp(~r)] e−
P

α H0[φα]

×e−
P

~r [m
P

α ǫα(~r)+ 1
2
(m2−m2)

P

α,β ǫα(~r)ǫβ(~r)+...]
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Perturbative results (2)

Renormalization group predictions for the decay exponents of the
moments

〈Gσσ(u)〉n1/n ∼ u−2xb
σ(n)

of the spin-spin correlation function of conformal minimal models
(Ludwig, Dotsenko, Lewis)

x
b
σ

(n) = x
b,Pure

σ
−

n − 1

16

(

yH +

»

11

12
− 4 ln 2 +

n − 2

24

„

33 −
29π
√

3

«–

y2
H

2

)

+ O(y
3
H )

where yH = αPure/νPure for disorder coupled to the energy density.
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Perturbative results (3)
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Perturbative results (4)
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Perturbative results (5)
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Perturbative results (6)
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Multifractality at boundaries
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Replica Symmetry Breaking

Even for uncorrelated disorder, i.e.

m(~r)m(~r ′) = m2δ(~r −~r ′)

it appears a coupling between different replicas. All interactions
are symmetric under permutation between replicas. But the
associated random fixed point may be unstable (random field XY
model, φ4) and the system flows under renormalization toward a
new fixed point where this symmetry is broken !

p
∑

α,β=1

gαβǫα(~r)ǫβ(~r)
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Replica Symmetry Breaking (2)

For minimal models, renormalization group calculations leads to

Replica symmetry

xb
σ (2) = xb,Pur

σ − 1

16
yH +

1

32

(

4 ln 2 − 11

12

)

y2
H + O(y3

H)

Broken replica symmetry

xb
σ (2) = xb,Pur

σ − 1

16
yH +

1

32
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Replica Symmetry Breaking (3)

2 2.5 3 3.5
q

0.11

0.12

0.13

0.14

x σb (2
)

Systeme pur
Symetrie des repliques
Brisure de symetrie des repliques
Matrice de transfert



Self-averaging Rare events The example of the Ising chain Multifractality Comparison with perturbative results Replica Symmetry

Universality

Universality of the multifractal spectrum
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Prob. distrib. and multifractal spectrum

The multifractal spectrum is entirely determined by the proba.
distribution.

〈Gσσ(u)〉n =

∫ 1

0
dG ℘u(G )Gn ∼ Anu

−2X (n)

where X (n) = nxb
σ (n). Let y = − lnG and ℘̃u(y)dy = ℘u(G )dG

∫ +∞

0
dy e−ny ℘̃u(y) ∼ Anu

−2X (n)

By Mellin-Fourier transform

℘̃u(y) ∼ 1

2iπ

∫ δ+i∞

δ−i∞
dn eny−2X (n) ln u+lnAn
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Prob. distrib. and multifractal spectrum (2)

Let α = y/2 ln u. In the saddle point approximation

℘̃u(y) ∼ 1

2iπ

∫ δ+i∞

δ−i∞
dn e−2 ln u[X (n)−nα] ∼ e−2 ln u H(α)

where H(α) is the Legendre transform of the exponent X (n)

H(α) = X (n∗) − αn∗, α =

(

∂X (n)

∂n

)

n∗
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Prob. distrib. and multifractal spectrum (3)

H(α) = X (n) − αn

αH(   )

X(n)

0 α σ
b α 0 αx  (n)
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Prob. distrib. and multifractal spectrum (4)
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Conclusions

Self-averaging because of rare events

Multifractality

Multifractal spectrum determined by the probability
distribution
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