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Self-averaging
Self-averaging

Physical observables ¢ should be averaged over thermal
fluctuations AND disorder realizations. Using Bertrand's notations
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Self-averaging (2)

(¢)k; is a random variable (fluctuates from sample to sample) with
probability distribution :

o) = [ DIKIPIGIS (o~ (6o

and average
@ = [ 69(6)do

Naive assumption: when the system size tends to oo, all disorder
realizations become equivalent, i.e.
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Self-averaging

Self-averaging (3)

Sample-to-sample fluctuations should vanish
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according to the central limit theorem.
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Wiseman and Domany (1995) observed that it is not true: R, and
R, tend to finite values in the thermodynamic limit !

m and y are examples of non self-averaging quantities.



Self-averaging

Self-averaging (4)
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Self-averaging (5)

Aharony, Harris and Wiseman (1998) showed that

@ Stable random fixed point: (non self-averaging)

rand.

Ry(L) ~ Ry(o0) 4+ A L)

Rg(o0) is a universal value.

@ Unstable random fixed point, i.e. oo < 0: ( )
Ry(L) ~ LYY
@ Out of the critical point ( )

Ry(L) ~ L7



Rare events

Rare events

The average is dominated by rare events. Average and typical
valuoezgooare different.
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Rare events

Rare events (2)

The distribution p(¢) displays a long tail:
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Impossibility of numerical simulations?



The example of the Ising chain

The Ising chain

—BH = Z Kioioit1, (oi€{-1;+1})

Spin-spin correlation function for a given disorder realization

(Goo(i,))) = (oioj) = Htanh Ky



The example of the Ising chain

The Ising chain (2)

If the K are uncorrelated independent random variables, the
central limit theorem applies to the sum

(Goo(iy))) = Zln tanh K
leading to (i —j| > 1)

©(In(Gyo(i,j)) =InC) ~ \/21_‘_76_('” C—In C)?/202



The example of the Ising chain

The Ising chain (3)

Typical

G;);pical(i’j) _ e|j—i||ntanhK _ eln(Ggg(i,j)>
and average values
Goali)] = [ olx)dc = eliTTMEME . il )

are different (Derrida, 1981). Rare events: large number of strong
couplings.



The example of the Ising chain

The Ising chain (3)

One can define two different correlation lengths

ical r _— r
In Gc%pma (r) ~ _W’ In (Goo(r)) ~ _éavg
with different critical behavior
gtypical - ’T . Tc‘_ytypical’ gavg -~ |T . Tc‘_yavg

The stability of the random fixed point imposes v*V8 > 2/d but
ptypical can yiolate this constraint.



The example of the Ising chain

Multifractality
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Multifractality

Multifractality (2)

For a self-averaging quantity, for instance a Gaussian distributed

random variable, the satisfy the recursion relation (Wick
Theorem)
3 ™y (6-3) 20"
o= = == [ dv(e—aye I
6= = ore

= (n=1)0*(¢— )2
The scaling dimension xg(n) of (¢ — 5)”1/’1 is thus

xp(n) = x5(2) = xp



Comparison with perturbative results
Perturbative results

Replica trick

F= mZ=—lm [2°-1]
p—0p

For disorder m(¥) coupled to the energy density €(r)
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Comparison with perturbative results

Perturbative results (2)

Renormalization group predictions for the decay exponents of the
moments Y .

T~ 7 N~ i/n _

(Goo(u))7 "~ a2

of the spin-spin correlation function of conformal minimal models
(Ludwig, Dotsenko, Lewis)
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where yy = o™ /P for disorder coupled to the energy density.



Perturbative results (3)
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Perturbative results (4)

Comparison with perturbative results
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Comparison with perturbative results

Perturbative results (5)
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Perturbative results (6)
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Comparison with perturbative results

Multifractality at boundaries
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Replica Symmet

Replica Symmetry Breaking

Even for uncorrelated disorder, i.e.

m(F)m(F') = m25(r — 7')

it appears a coupling between different replicas. All interactions
are symmetric under permutation between replicas. But the
associated random fixed point may be unstable (random field XY
model, ¢*) and the system flows under renormalization toward a
new fixed point where this symmetry is broken !
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Replica Symmet

Replica Symmetry Breaking (2)

For minimal models, renormalization group calculations leads to

@ Replica symmetry

1 1 11
b b,Pur 2 3
x2(2) = x; 6yH+ % (4|n2 12>yH+O(yH)

@ Broken replica symmetry
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Replica Symmet

Replica Symmetry Breaking (3)
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Universality

Universality of the multifractal spectrum
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Prob. distrib. and multifractal spectrum

The multifractal spectrum is entirely determined by the proba.
distribution.

1
(Goo (U))" = / dG pu(G)G" ~ Apu2X()
0
where X(n) = nx?(n). Let y = —In G and $,(y)dy = p,(G)dG

“+o00
/ dy e ™ Gu(y) ~ Apu=2X()
0

By Mellin-Fourier transform
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Prob. distrib. and multifractal spectrum (2)

Let & = y/2Inu. In the saddle point approximation

1 d+ioco

@u(y) ~ 5

dn e—2|n ulX(n)—na] _, e—2|nu H(a)
2im d—ioco

where H(«) is the Legendre transform of the exponent X(n)

H(a) = X(n*) — an’, “= (a)gfvn)>n*




Prob. distrib. and multifractal spectrum (3)
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and multifractal spectrum (4)
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Conclusions

o Self-averaging because of rare events
o Multifractality

o Multifractal spectrum determined by the probability
distribution
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