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Spin Glass Systems

● There are real experimental spin glass systems. 
(dilute solutions of magnetic transition metal impurities in noble metal 
hosts, for instance  Au-2.98% Mn or Cu-0.9% Mn)

RKKY interaction:  Fermi wave number Jeff R= J0
cos2k FR

R3 ,kFR≫1,kF



  

Basic ingredients for spin-glass behaviour

● randomness  in course of the dilution process the 
positions of the impurity moments are randomly 
distributed

● competing interactions  due to the oscillations in the 
effective interaction as a function of the distance R

RKKY interaction:  Fermi wave number Jeff R= J0
cos2k FR

R3 ,kFR≫1,kF



  

Spherical Cow

Most theory uses the simplest model with these 
ingredients:

the Edward-Anderson Model (EA)

with     lie on a regular lattice and the quenched 
coupling constants     . 

H=−∑
〈 i , j 〉

JijSiS j−∑
i

hiSi

Si=±1
Jij



  

Spherical Cow

Most theory uses the simplest model with these 
ingredients:

the Edward-Anderson Model (EA)

bimodal distribution

3D:
[M. Palassini and S. Caracciolo, Phys. Rev. Lett. 82, 5128 (1999)]

no solution

H=−∑
〈 i , j 〉

JijSiS j−∑
i

hiSi

Jij=±1

T c~1.16,hi=0



  

What is a spin glass?

A system with disorder (randomness) and frustration.
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Another Cow

the Sherrington-Kirkpatrick Model (SK)

Gaussian distribution with:

     is the number of spins.

mean field, Parisi's replica solution [PRL 43 (1979) 1754]

H=−∑
i j

JijSiS j−∑
i

hiSi

〈 Jij〉=0

〈 Jij
2
〉−〈 Jij〉

2
=
J
N

N

T c=1,hi=0

fully connected



  

Overlap parameter

for to (real) replica            and given coupling constants

  probability density of 

  cumulative distribution of 

average over the disorder

q=
1
N∑i=1

N

Si
1Si

2

Si
1 ,Si

2

P Jq q

x J q=∫dq'P J q' P Jq

P q=[P J q]av=
1
N J
∑
J

P Jq

x J q=[x J q]av=
1
N J
∑
J

x Jq

J={ Jij }

1 2



  

Slow Dynamics

The dynamics is very 
slow at low T.
System is not in 
equilibrium due to 
complicated energy 
landscape: system 
trapped in one 
“valley” for long 
times.

valley
valley

barrier

(free) energy

configuration

DE



  

Algorithms

[K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65 (1996) 1604]

Exchange at regular intervals
system i and i+1 with

P i , i1=min [1, expE ]

T 1

T 3
T 4

T 2

Parallel tempering (PT)Parallel tempering (PT)

System can
decorrelate at high T

expectation values for single system:

〈A〉T i=〈Ai〉

Talk of H. Katzgraber
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Algorithms

[B. Berg, W. Janke, PRL 80 (1998) 4771]

Multioverlap Algorthim (MuQ)Multioverlap Algorthim (MuQ)

System can reach highly
suppressed states

non-Boltzmann sampling with  
multioverlap weights :

canonical expectation values:

〈O〉can=
〈W O〉
〈W 〉

W q

exp[−H ]W q



  

Algorithms

[B. Berg, W. Janke, PRL 80 (1998) 4771]

Multioverlap Algorthim (MuQ)Multioverlap Algorthim (MuQ)

non-Boltzmann sampling with  
mutlioverlap weights :

canonical expectation values:

〈O〉can=
〈W O〉
〈W 〉

W q

exp[−H ]W q

W0q =1

simulation

W i1q=
H i q

W i q

sampling

i=i1

iteration 1-9:

iteration 20-28:



  

H=−∑
〈 i , j 〉

J SiS j

Si=±1

Onsager solution, Onsager-Yang solution

T c=
2

log21
=2.269...

m0=1−sinh
−4

2
T


1
8

The 2D Ising Model



  

The 2D Ising Model

T=1.95T c

L=40

T c=
2

log21

m0=1−sinh−4

2
T


1
8

H=−∑
〈 i , j 〉

J SiS j

Si=±1



  

The 2D Ising Model

multimagnetical simulation



  

The 2D Ising Model

multimagnetical simulation



  

The 2D Ising Model

But there are still problems:But there are still problems:

droplet/strip

evaporation/
condensation



  

The 2D Ising Model

But there are still problems:But there are still problems:



  

The 2D Ising Model

But there are still problems:But there are still problems:

T. Neuhaus and J. S. Hager, J. Stat. Phys. 116 (2003) 47, 
see also poster from A. Nußbaumer



  

Algorithms

[E. Bittner, A. Nußbaumer, W. Janke, in preperation]

combination combination of both methods:of both methods: PT-MuQ PT-MuQ

min{1,exp[−mH ]
W 'mq

Wmq }

simulate (e.g.) 1 sweep with MuQ
at N different temperatures

exchange replica

min{1,exp [n−mEn−Em ]
WmqnW nqm

WmqmWn qn }

iterate to improve
weights



sample with fixed
weights

weights OK?

W i1q=
H iq

W i q

no!

yes!



  

Algorithms

[E. Bittner, A. Nußbaumer, W. Janke, in preperation]

iterate to improve
weights



sample with fixed
weights

weights OK?

WmmW i1q=
H iq

W i q

no!

yes!

● weights “belong” to a temperature

● if every replica is simulated on a
different computer, all nodes have 
to have all weights

● in reality weights are computed with
a more “sophisticated” approach

combination combination of both methods:of both methods: PT-MuQ PT-MuQ



  

Algorithms

SK model, N=512

EA model, V=8x8x8



  

Slow Dynamics

The dynamics is very 
slow at low T.
System is not in 
equilibrium due to 
complicated energy 
landscape: system 
trapped in one 
“valley” for long 
times.

valley
valley

barrier

(free) energy

configuration

DE



  

Main objective: barrier heightsMain objective: barrier heights
2D Ising Model

Pmax L

Pmax L

Pmin L
~exp [FBL ]≡L

FB~L~2L

L=30

L=100
Pmin L

TT c

H=−∑
〈 i , j 〉

J SiS j

Si=±1



  

Main objective: barrier heightsMain objective: barrier heights
Spin glasses:

How do we measure 
the size of the 

largest barrier?

TT c



  

1d Markov chain/transition matrix1d Markov chain/transition matrix

[B.A. Berg, A. Billoire and W.  Janke, PRB 61 (2000), 12143]

T=
1−w1,2 w1,2 0 ⋯

w2,1 1−w2,1−w2,3 w2,3 ⋯

0 w3,2 1−w3,2−w3,4 ⋯

0 0 w4,3 ⋯

⋮ ⋮ ⋮ ⋱


Definition:

wi , j=
1
2
min[1, P q j

P qi ]



  

1d Markov chain/transition matrix1d Markov chain/transition matrix

T=
1−w1,2 w1,2 0 ⋯

w2,1 1−w2,1−w2,3 w2,3 ⋯

0 w3,2 1−w3,2−w3,4 ⋯

0 0 w4,3 ⋯

⋮ ⋮ ⋮ ⋱


Definition:

T fulfills detailed balance   only real eigenvalues 

B
q
=

1
Nlog1

autocorrelation time for q:

second largest eigenvalue1 0=1



  

Motivation
theoretical predictions for mean-field model (SK):
barrier between time-reversed states scales with 
system size as

(Rodgers and Moore, 1988)
(Kinzelbach and Horner, 1991)

results for short-ranged models (EA) are far away 
from the mean-field theory limit

(Berg, Billoire, and Janke, 2000) 

N1/3

c1c2 lnN



  

Results for the SK Model

fit rage
B∝expcN





  

Results for the SK Model

fit rage

[L.A. Pastur and M.V. Shcherbina, J. Stat. Phys. 62 (1992) 1]
non-self-averaging (SK)

B∝expcN





  

Results for the SK Model

F  ; ;  x=exp [−1
x−
 

−1/

]
Fit integrated probability density:

0
fat tailed (algebraic)
Fréchet distribution

TT c

 

extreme-value distribution

fat tails



  

Results for the SK Model



  

Results for the SK Model

Peaked probability distributionPeaked probability distribution D FB /FBmed

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no scaling,
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Results for the SK Model

Peaked probability distributionPeaked probability distribution D FB /FBmed


scaling,
i.e. self-averaging

(EA Model)



  

Results for the EA Model

but goodness of fit ...

B∝expcN


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Results for the EA Model

F  ; ;  x=exp [−1
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]
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SK Model

EA Model



  

Results for the EA Model

Peaked probability distributionPeaked probability distribution D FB /FBmed


EA Model

SK Model

no scaling,
i.e. non-self-averaging



  

Conclusion

● Algorithmic 
- PT is good to decrease the autocorrelation time

- MuQ gives the full           information

- the combination of PT+MuQ makes it possible
   to get           down to 

● Physical
- the free energy barriers of the SK and EA model are

a) non-self-averaging
b) follow the Fréchet extreme-value distribution

- the free energy barriers of the SK model diverge with 
   an exponent of 
- the last is not true for the EA model

T≈0.5T c

P q

P q

=1/3



  

Thank you!


