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ITP Leipzig, April 2008 – p.



Plan
Experimental results

Introduction of the model

Perturbative results

Observables

Analysis techniques

Numerical results for the first order regime in
2D

... and in 3D ?

Conclusions
ITP Leipzig, April 2008 – p.



section zero
Definition of the critical exponents:

critical exponents

physical quantity singularity

specific heat Cv(T ) ∼ |T − Tc|
−α

order parameter m(T ) ∼ |T − Tc|
β
, T < Tc

susceptibility χ(T ) ∼ |T − Tc|
−γ

critical isotherm mTc (h) ∼ |h|
1/δ

correlation length ξ(T ) ∼ |T − Tc|
−ν

correlation function 〈s(r1) · s(r2)〉 ∼ |r1 − r2|
−(d−2+η)

, T = Tc

〈s(r1) · s(r2)〉 ∼ e|r1−r2|/ξ(T ), T > Tc

〈s(r1) · s(r2)〉 ∼ m2(T ) + e|r1−r2|/ξ(T ), T < Tc

Here we usually deal with xσ = β/ν and xε = (1 − α)/ν.
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Experimental results
Order-disorder transitions of adsorbed atomic layers
belong to different 2D universality classes.
Ex. The (2 × 2)−2H/Ni(111) transition of hydrogen
adsorbed on the (111) surface of Ni belongs to the 2D

four-state Potts model universality class, (the ground state
stable at low temperatures has a four-fold degenaracy due
to the four possible coverings of the ad-atoms at the (111)

surface).

ITP Leipzig, April 2008 – p.



Experimental results
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Experimental results
Expected exponents are theoretical values of q = 4 PM

β = 1/12 ≃ 0.083,

γ = 7/6 ≃ 1.167,

ν = 2/3 ≃ 0.667.
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Experimental results
LEED experiments: measure exponents through the
diffracted intensity I(q).
= two-dimensional Fourier transform of the pair correlation
function of ad-atom density.
Long range fluctuations produce an isotropic Lorentzian
with peak intensity given by the susceptibility and width
given by inverse correlation length.
Long range order gives a background proportional to order
parameter squared:

I(q) = 〈m2〉δ(q − q0) +
χ

1 + ξ2(q − q0)2
.
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Experimental results
The following exponents were thus measured

β = 0.11 ± 0.01, γ = 1.2 ± 0.1, ν = 0.68 ± 0.05

in correct agreement with 4-state Potts values (the small
deviation, especially for the exponent β, is attributed to the
logarithmic corrections to scaling of the pure 4-state Potts
model.
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Experimental results
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Experimental results
Presence of intentionally added oxygen impurities.
Mobility of oxygen atoms is low enough at hydrogen
order-disorder transition critical temperature that they
essentially represent quenched impurities randomly
distributed in the hydrogen layer. The exponents become

β = 0.135 ± 0.010, γ = 1.68 ± 0.15, ν = 1.03 ± 0.08,

(β = 0.11 ± 0.01, γ = 1.2 ± 0.1, ν = 0.68 ± 0.05)

→ modification of universality class.
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The model
Different types of disorder

The Potts model
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The model
Since universality is expected to hold, the detailed
structure of the Hamiltonian should not play any important
role in universal quantities like critical exponents.
Randomness:

−βH =
∑

(ij)

Kijsisj +
∑

i

Hisi +
∑

i

D(sini)
2 + . . .

where Kij, Hi, or ni are independent random quenched
variables drawn from some probability distributions P [Kij],
P [Hi], or P [ni].
Usually, uncorrelated quenched random variables,
Kij ≡

∫

KP [K]dK = K0, and KijKkl = ∆δikδjl.
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The model
Special cases of probability distributions e.g.:

i) dilution problems, non magnetic impurities are randomly
distributed on the bonds or sites of the lattice,

P [Kij] =
∏

(ij)

[pδ(Kij − K) + (1 − p)δ(Kij)],

ii) binary distributions, e.g. disordered alloy of two
magnetic species

P [Kij] =
∏

(ij)

[pδ(Kij − K) + (1 − p)δ(Kij − Kr)],
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The model
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The model
The Potts model:
The 2-dimensional q-state Potts model is defined by:

−βH =
∑

(i,j)

Kijδσi,σj

{σi} can take q values 0, 1, . . . q − 1 and the “exchange
couplings” Kij = Jij/kBT are quenched independent
random variables.
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The model
The q−state Potts model is the natural candidate for the
investigations of influence of disorder - the pure model
exhibits two different regimes:

a second order phase transition when q ≤ 4 (2D)

a first order one for q > 4 (2D).

In 3D, ordering is easier and the transition becomes
weakly first-order at q = 3 already.
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The model
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Perturbative results
Replica limit and Harris criterion

First-order transitions

Perturbative expansions

Replica symmetry and replica symmetry
breaking
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Perturbative results
For a specific disorder realization [Kij], the Hamiltonian,
P.F. and free energy are

− βH[Kij, σi] =
∑

(ij)

(K0 + δKij)δσi,σj
,

Z[Kij] =
∫

D[σi]e
−βH[Kij ,σi],

F [Kij] = −kBT ln Z[Kij].

quantities of interest → average over the distribution
P [Kij],

F = F [Kij] = −kBT
∫

D[Kij]P [Kij] ln Z[Kij].
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Perturbative results
Averaging the log of P.F. is possible through the identity

ln Z = lim
n→0

1

n
(Zn − 1),

which requires n copies (with labels α) with the same [Kij],

(Z[Kij])
n =

∫

(

n
∏

α=1

D[σ
(α)
i ]

)

e−β
∑

α
H[Kij ,σ

(α)
i ],

and then to perform integrations,

e−X = e−X̄+ 1
2
(X2−X̄2)+...,
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Perturbative results
leading to

(Z[Kij])n =
∫

(

n
∏

α=1

D[σ
(α)
i ]

)

×e
−
∑

α
(K0+δK)

∑

(ij)
δ
σ
(α)
i

,σ
(α)
j

×e

∑

α6=β
(δK2−δK

2
)
∑

(ij)
δ
σ
(α)
i

,σ
(α)
j

δ
σ
(β)
i

,σ
(β)
j

+...

ITP Leipzig, April 2008 – p. 22



Perturbative results
Leading term: δKij has RG eigenvalue yt = d − xε and
corresponds to a shift of the transition temperature
(relevant effect).
Next term: δK2 − δK

2
has RG eigenvalue yH = d − 2xε

and all following terms are irrelevanta.
aThe leading (unperturbed) term is written in the continuum limit as

−βHc = m0
∫
∑

α εα(r)d2r where m0 stands for K0 + δK while the

perturbation is written g0
∫
∑

α 6=β εα(r)εβ(r)d2r with g0 corresponding to

δK2 − δK
2
.
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Perturbative results
Using hyperscaling relation, the Harris scaling dimension
of disorder is rewritten

yH = α/ν.

disorder is a relevant perturbation when the specific
heat exponent α of the pure system is positive

it is irrelevant (and universal properties are thus
unaffected by randomness) when α is negative.

In borderline case α = 0, randomness is marginal to
leading order, e.g. RBIM in 2D.
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Perturbative results
First-order transitions were considered later (Imry and
Wortis, Aizenman and Wehr, Hui and Berker).
Intuitively, the existence of a latent heat corresponds to a
discontinuity of the energy density → vanishing energy
density scaling dimension.
Disorder is always relevant in this sense.
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Perturbative results
Zn couples the replicas via energy-energy interactions

∑

α 6=β

(δK2 − δK
2
)
∑

r

εα(r)εβ(r)

which are treated as a perturbation around the pure fixed
point (q ≤ 4)a.

a εα(r) is a short notation for δ
σ

(α)
i σ

(α)
j

. Second cumulant of the coupling

distribution will be denoted g0
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Perturbative results
Two different schemes:

i) replica symmetric scenario, where all the replicas are
coupled through the same interaction strength,

∑

α 6=β

g0

∑

r

εα(r)εβ(r),

ii) replica symmetry breaking scenario, where the coupling
between replicas are replica-dependent,

∑

α 6=β

gαβ

∑

r

εα(r)εβ(r).
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Perturbative results
consider 2D Potts model with weak bond randomness,

compute the scaling dimensions x′
σ(n) and x′

ε(n)

around Ising model conformal field theory,

take the replica limit n → 0.

Expansions performed in terms of the disorder strength

δK2
ij − δKij

2
,

and exponents are given in powers of yH = α/ν.
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Perturbative results
For scaling operator φ, the perturbed correlation function
〈φ(0)φ(R)〉g corresponds, in the limit n → 0, to the average
correlator 〈φ(0)φ(R)〉.

〈φ(0)φ(R)〉g =
Trφ(0)φ(R)e−β(Hc+Hg)

Tre−β(Hc+Hg)

where perturbation term −βHg = g0

∫
∑

α 6=β εα(r)εβ(r)d2r

acts on ‘critical’ Hamiltonian
−βHc = m0

∫
∑

α εα(r)d2r + h0

∫
∑

α σα(r)d2r.
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Perturbative results
Using

e−β(Hc+Hg) ≃ (1 − βHg + . . .)e−βHc

expansion in terms of unperturbed correlators:

〈φ(0)φ(R)〉g = 〈φ(0)φ(R)〉0 − β〈Hgφ(0)φ(R)〉0
+

1

2
β2〈Hg

2φ(0)φ(R)〉0 + . . .

and renormalization of coupling constant follows.
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Perturbative results
RS: Collecting results of Dotsenko and co-workers, new
thermal and magnetic scaling dimensions (with primes) in
terms of the original ones (unprimed) are:

x′
ε = xε +

1

2
yH +

1

8
y2

H + O(y3
H)

x′
σ = xσ +

1

32

Γ2(− 2
3
)Γ2( 1

6
)

Γ2(− 1
3
)Γ2(− 1

6
)
y3

H + O(y4
H)

yH = d − 2xǫ(pure) ∝ q − 2.
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Perturbative results
RSB: leads to different fixed point structure.
gαβ now depends on the pair indices, leading to a modified
thermal exponent

x′′
ε = xε +

1

2
yH + O(y3

H),

while to y3
H order, the magnetic scaling index remains the

same as in the replica symmetric scenario.
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Perturbative results
Are these effects measurable?
At q = 3 we have xε = 4/5 and yH = 2/5.

Scheme Scaling dimensions

xσ xε xσ2 xσ0 xε0

Pure system 0.13333 0.800 0.13333 0.13333 0.800

RS 0.13465 1.000 0.11761 0.18303 1.090

RSB 0.13465 1.020 0.12011 – –

!!! 2.5 % 1.9 %
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Observables
Monte Carlo versus transfer matrices

Physical quantities

ITP Leipzig, April 2008 – p. 34



Observables
Monte Carlo simulations
Main recipe of cluster algorithms is identification of clusters
of sites using a bond percolation process connected to the
spin configuration. Spins of clusters are independently
flipped. A cluster algorithm is efficient if percolation
threshold coincides with the transition point of the spin
model, which guarantees that clusters of all sizes will be
updated in a single MC sweep.
For Potts model, percolation process involved is through
the mapping onto the random graph model
(Fortuin-Kasteleyn representation).
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Observables
Monte Carlo simulations

Order parameter density:

M = 〈σ〉, σ =
qρmax − 1

q − 1
,

where ρmax is fraction of spins in majority orientation.
To obtain the local order parameter 〈σ(i)〉 at site i, it is
counted 1 when the spin at site i is in the majority state
and 0 otherwise.
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Observables
Susceptibility:

kBTχ = Ld(〈σ2〉 − 〈σ〉2).

Energy density:

E = 〈ε〉, ε =
1

2L2

∑

(i,j)

Kijδσi,σj
.

Specific heat:

C/kB = Ld(〈ε2〉 − 〈ε〉2).
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Observables
Correlation functions: connected spin spin correlation
function Gσ(i, j) = 〈σ(i)σ(j)〉 − 〈σ2〉 at criticality
obtained by the estimator of the paramagnetic phase,

q〈δσi,σj
〉 − 1

q − 1
,

i.e. probability that spins at sites i and j belong to the
same finite cluster.
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Observables
All these quantities are then averaged over the disorder
realisations

〈...〉 =
∫

〈...〉P [〈...〉]d〈...〉.
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Observables
Transfer matrix technique
A unique connectivity label ηi = η attributed to all sites i

interconnected through a part of the lattice previously built
on a strip of length m. In connectivity space, |Z(m)〉 is a
vector whose components are the partial partition function
Z(m, {ηi}m) whose connectivity on last row is {ηi}m.
The connectivity transfer matrix: |Z(m + 1)〉 = Tm|Z(m)〉
and partition function of strip of length m:

|Z(m)〉 =
m−1
∏

k=1

Tk|Z(1)〉.
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Observables
For a pure system, Z = TrTm,
Tm =

∑

n |tn〉tmn 〈tn|→ |t0〉tm0 〈t0|,

f0 = − 1

m
kBT ln Z = −kBT ln t0,

Quenched free energy density: Lyapunov exponent of
product of infinite number of transfer matrices Tk

fL = −kBTΛ0(L),

Λ0(L) = lim
m→∞

1

m
ln

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

m
∏

k=1

Tk

)

|v0〉
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

|v0〉 is unit initial vector.
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Analysis of data

Temperature dependence

FSS

Short-time dynamics

Conformal mappings
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Analysis of data
Temperature dependence
According to their definition, critical exponents can be
obtained from temperature-dependence study, e.g.

M(t) = B|t|β(1 + . . .), t = Kc − K < 0.

Technically, one uses an effective temperature-dependent
exponent,

βeff(t) =
d ln M(t)

d ln |t| , β = lim
t→0

βeff(t).
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Analysis of data
Finite-size scaling
Standard Finite-Size Scaling: on a finite system, physical
quantities cannot exhibit any singularity. They can be
written as singular term corrected by some scaling
function, e.g. ML(T ) = |K − Kc|βf(L/ξ). Function f(x)

depends on geometry, but at Kc, the following behaviour is
obtained:

ML(Kc) ∼
L→∞

L−β/ν .
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Analysis of data
Short-time dynamics scaling
For a system in the high temperature phase, suddenly
quenched to critical temperature, a universal dynamic
scaling behaviour emerges:

M(t, τ, L,M0) = b−β/νM(b1/νt, b−zτ, b−1L, bx0M0),

z is dynamic exponent (dependent on algorithm),
t = |K − Kc|, M0 is initial magnetisation, τ is the time
(measured in MC sweeps).
In thermodynamic limit, and at criticality, expected
evolution is given by M(τ,M0) = τ−β/νzf(M0τ

−x0/z).
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Analysis of data
Conformal mappings: principle
Scale invariance coupled with rotation and translation
invariance implies covariance under local scale
transformations, i.e. conformal transformations. For any
local field (energy density or magnetisation) the usual
homogeneity assumption under a homogeneous rescaling
R → bR

〈φ(0)φ(bR)〉 = b−2xφ〈φ(0)φ(R)〉

is extended to local transformations with position
dependent rescaling factor.
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Analysis of data
In 2D conformal transformations are realized by analytic
functions in complex plane z −→ w(z) and covariance law
of correlators becomes:

〈φ(w1)φ(w2)〉 = |w′(z1) |−xφ|w′(z2) |−xφ〈φ(z1)φ(z2)〉.

Helpful in numerical analysis, since simulations are
performed on finite systems of particular shape. Critical
properties of infinite system 〈φ(z1)φ(z2)〉 ∼ |z1 − z2|−2xφ can
be obtained by fitting data to transformed conformal
expression.

ITP Leipzig, April 2008 – p. 47



Analysis of data
Conformal mappings: strip
• Mapping onto a cylinder: the logarithmic transformation

w(z) =
L

2π
ln z = u + iv

maps the infinite plane onto a strip of finite width L with
PBC and infinite length (cylinder). One gets on the strip

〈φ(0, 0)φ(u, v)〉 =
(

2π

L

)2xφ
[

2 cosh
(

2πu

L

)

− 2 cos
(

2πv

L

)]−xφ

.
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Analysis of data
At large distances it becomes an exponential decay

〈φ(0, 0)φ(u, 0)〉pbc =
(

2π

L

)2xφ

exp
(

−2πuxφ

L

)

.
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Analysis of data
With mapping w(z) = L

π
ln z, the half-infinite plane → strip

with open boundaries in transverse direction. Transverse
profile of order parameter density with fixed-free spins is
given by

〈σ(v)〉+f = const ×
[

L

π
sin

(

πv

L

)]−xσ

F
[

cos
(

πv

2L

)]

.
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Analysis of data
Conformal mappings: square
• Mapping onto a square: Schwarz-Christoffel

w(z) =
N

2K
F(z, k), z = sn

(

2Kw

N

)

maps half-infinite plane z = x + iy (0 ≤ y < ∞) inside a
square w = u + iv of size N × N .
F (z, k): elliptic integral of first kind,
sn(2Kw/N): Jacobian elliptic sine,
K = K(k): complete elliptic integral of first kind,
modulus k is solution of K(k)/K(

√
1 − k2) = 1

2
.
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Analysis of data

Two-point correlation function or density profile in presence
of ordering surface fields: 〈σ(w)〉sq. = const×[κ(w)]−xσ

where κ(w) =
(

ℑm[z] (|1 − z2||1 − k2z2|)−1/2
)

comes from
SC mapping.
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Analysis of data
Conformal mappings: square with “pillow” BC
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Analysis of data

Summary

infinite plane → PBC strip w = L
2π

ln z

half-plane → open strip w = L
π

ln z

infinite plane → “pillow” square z = sn2 2Kw
L

half-plane → open square z = sn 2Kw
L
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Numerical results in
2D: Regime q > 4

Nature of the transition

Location of the fixed point

Critical exponents
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Numerical results in
2D: Regime q > 4

Nature of the transition
When q > 4, what about the nature of the transition in the
presence of disorder?
Free energy barrier ∆F (L), defined from energy histogram
P(E) in MC simulations is according to
e−β∆F (L) = Pmax/Pwell. Energy barrier ∆F (L) = −2σo.d.L

d−1

is found to vanish in the thermodynamic limit (σo.d. is
order-disorder interface tension between two possibly
coexisting phases).
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Numerical results in
2D: Regime q > 4
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Numerical results in
2D: Regime q > 4

The dynamics of MC simulations leads to compatible
conclusions: energy autocorrelation time τE is
exponentially large (with system size) when non vanishing
order-disorder interface tension σo.d. exists,

τE ∼ Ld/2e2σo.d.L
d−1

,

while it is a power law at second-order transitions,

τE ∼ Lz,

dynamical exponent z depends on the algorithm.
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Numerical results in
2D: Regime q > 4
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Numerical results in
2D: Regime q > 4

In strip geometry, free energy density f̄L has corrections to
scaling

f̄L ∼ f∞ + O(L−de−L/ξ)

at fisrt-order transitions. Plotting
λ(L) = ln(f̄L − f∞) + d ln L vs strip width L should give
asymptotically a straight line with slope 1/ξ. With
randomness, the curve corresponding to 8−state Potts
model indicates a diverging correlation length.

ITP Leipzig, April 2008 – p. 60



Numerical results in
2D: Regime q > 4
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Numerical results in
2D: Regime q > 4

Location of the random fixed point
Generically: strong crossover effects (competition between
disordered FP and pure and percolation FP), or corrections
to scaling linked to irrelevant scaling variables. These
effects are important in random systems and
corresponding corrections to scaling can be substantially
reduced when one measures critical exponents in the
regime of the random FP, expected to be reached at the
vicinity of the maximum of the effective central charge.
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Numerical results in
2D: Regime q > 4

For a disordered system, c is defined from the finite-size
behaviour of the quenched average free energy density fL,
and depends on disorder strength, ceff(g),

fL = f∞ − πceff

6L2
+ a4L

−4.
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Numerical results in
2D: Regime q > 4
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Numerical results in
2D: Regime q > 4

Also standard FSS:
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Numerical results in
2D: Regime q > 4
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One gets

β = 0.151(1)

β1 = 0.60(1)
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Numerical results in
2D: Regime q > 4
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γ/ν = 1.686(17),

β/ν = 0.152(4)

ν = 1.005(30)
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Numerical results in
2D: Regime q > 4

Conformal mappings versus FSS

〈σ(v)〉+f = const ×
[

L

π
sin

(

πv

L

)]−x′
σ
[

cos
(

πv

2L

)]x′1
σ

,

0.1 1
sin πv/L

0.1

1

<
σ(

v)
>

+
f

0.1 1
sin πv/L

0.1

1

<
σ(

v)
>

+
f

q=8, binary disorder

ITP Leipzig, April 2008 – p. 68



Numerical results in
2D: Regime q > 4

In the square geometry,

〈σ(w1)σ(w)〉sq ∼ Aω|κ(w)|−x′
σ , 〈σ(w)〉sq ∼ const × |κ(w)|−x′
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Numerical results in
2D: Regime q > 4

x′
σ for the 8−state Potts model with binary disorder

Technique Quantity x′
σ Ref.

Standard techniques

t−dependence Mb(t) 0.151(1) Palàgyi et al

FSS Mb(Kc) 0.153(1) Picco, Chatelain and Berche

FSS 〈σ(0)σ(L/2)〉 0.159(3) Olson and Young

Short-time dynamics Mb(τ) 0.151(3) Ying and Harada

Conformal mappings

Periodic strip 〈σ(0)σ(u)〉st 0.1505(3) Chatelain and Berche

Free BC square 〈σ(0)σ(w)〉sq 0.152(3) Chatelain and Berche

Fixed-free strip 〈σ(v)〉st 0.150(1) Palàgyi et al

Fixed BC square 〈σ(w)〉sq 0.1503(1) Chatelain and Berche
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Numerical results in
3D: Regime q = 4

Implementation of the simulations

Typical/rare samples - 1st-2nd order regimes

Phase diagram and critical exponents
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Numerical results in
3D: Regime q = 4

Bond-diluted 4-state Potts model on simple cubic lattice:

−βH = K
∑

(i,j)

εijδσi,σj

P [εij] =
∏

ij

[pδ(εij − 1) + (1 − p)δ(εij)]
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Numerical results in
3D: Regime q = 4

The system is characterized by the values of:

size L3

temperature T

dilution p and more precisely distribution of couplings
on the lattice, {Kij}.

For each disorder realization, simulations of the system
consist in storing the time series E[K](t), M[K](t) for each
MC iteration t of an update algorithm (Swendsen-Wang or
multicanonical, depending on the case considered).

ITP Leipzig, April 2008 – p. 73



Numerical results in
3D: Regime q = 4

MCS E M

[K] = [#1]

1 E[#1](1) M[#1](1)

2 E[#1](2) M[#1](2)

. . . . . . . . .

[K] = [#2]

1 E[#2](1) M[#2](1)

2 E[#2](2) M[#2](2)

. . . . . . . . .

Done at a given value of
p, for several sizes L, each
size simulated at several
temperatures T . Other in-
put parameters are #MCS,
#[K].
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First versus second
order
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Influence of # MC
iterations
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Rare events
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Typical events
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Rare event
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Typical event
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Phase diagram
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Phase diagram
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Tricritical point
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Finite-Size Scaling
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Critical exponents
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Conclusions in 2D
The two-dimensional Potts model is ideal framework to test influence of quenched
randomness on phase transitions.

It exhibits second-order transition completely characterised by conformal
invariance when q ≤ 4 and a first-order transition above.

The transition line is exactly known, and it is easy to build, in the random case,
probability distributions of coupling strengths which preserve the self-duality
relation.

Many results concerning the effect of a weak disorder are known using
perturbations expansions around the pure fixed point.

Numerical studies were performed from different sides: Monte Carlo simulations
coupled to finite-size scaling analysis, transfer matrices and sophisticated graph
and loop algorithms coupled to extensive use of conformal mappings.

The regime q > 4 was extensively studied, but did not display any particular
features compared to the regime q ≤ 4 in the presence of quenched randomness.
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Results and
conclusions in 2D

At the 2nd order induced FP:
γ/ν β/ν ν α

1.51 ± 0.03 0.64 ± 0.03 0.74 ± 0.02 −0.22 ± 0.06

ITP Leipzig, April 2008 – p. 87



Results and
conclusions in 3D

Open problems:

Precise location of the tricritical point
(pTCP ≃ 0.68 − 0.84)

Corrections to scaling

Crossover phenomena and influence of the percolation
FP (pb with ν)
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