Extending the dynamic range by an ensemble of neural networks

Johannes Zierenberg¹, Jens Wilting¹, Viola Priesemann¹, Anna Levina²

¹ Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany ² University of Tübingen, Max Planck Ring 8, Tübingen, Germany

CompPhys, 30 November 2018

Living organisms have to discriminate sensory stimuli that cover many orders of magnitude

Living organisms have to discriminate sensory stimuli that cover many orders of magnitude

	light intensity
$> 10^5 \mathrm{lx}$	too bright
$10^4 \mathrm{lx}$	daylight
$10^2 \mathrm{lx}$	indoor lighting
1 lx	moonlight
< 0.01lx	starlight

Living organisms have to discriminate sensory stimuli that cover many orders of magnitude

sound level

Psychometric response curve to sound level:

low

high

- correlation: behavior and single-neuron response
- single neuron response adjusted to input statistics

sound level discrimination in auditory midbrain of guinea pig

- correlation: behavior and single-neuron response
- single neuron response adjusted to input statistics
- population of neurons increases dynamic range

odor discrimination in mouse olfactory bulb glomeruli

Britten et al., J. Neurosci. (1992) Dean et al., Nat. Neurosci. (2005) Wachowiak & Cohen, Neuron (2001)

Time discrete (Δt) activity propagation with external drive (H):

 $\langle A_{t+1} | A_t \rangle = mA_t + H$

Time discrete (Δt) activity propagation with external drive (H):

$$\langle A_{t+1}|A_t\rangle = mA_t + H$$

The branching network:

Time discrete (Δt) activity propagation with external drive (H):

$$\langle A_{t+1}|A_t\rangle = mA_t + H$$

The branching network:

- recurrent excitation:
 - connectivity matrix w^{ij}

•
$$P_{\text{rec}}[s_{t+1}^j = 1 | s_t^i = 1] = w^{ij}$$

Time discrete (Δt) activity propagation with external drive (H):

$$\langle A_{t+1}|A_t\rangle = mA_t + H$$

The branching network:

- recurrent excitation:
 - connectivity matrix w^{ij}
 - $P_{\text{rec}}[s_{t+1}^j = 1 | s_t^i = 1] = w^{ij}$
- external excitation:
 - Poisson process with rate \boldsymbol{h}
 - $P_{\text{ext}}[s_{t+1}^i = 1] = \lambda(h) = 1 e^{-h\Delta t}$

Time discrete (Δt) activity propagation with external drive (H):

$$\langle A_{t+1}|A_t\rangle = mA_t + H$$

The branching network:

- recurrent excitation:
 - connectivity matrix w^{ij}
 - $P_{\text{rec}}[s_{t+1}^j = 1 | s_t^i = 1] = w^{ij}$
- external excitation:
 - Poisson process with rate h

•
$$P_{\text{ext}}[s_{t+1}^i = 1] = \lambda(h) = 1 - e^{-h\Delta t}$$

Connection between network and process:

$$m = \mathbb{E}_i \left(\sum_j w^{ij} \right)$$

Time discrete (Δt) activity propagation with external drive (H):

$$\langle A_{t+1}|A_t\rangle = mA_t + H$$

The branching network:

- recurrent excitation:
 - connectivity matrix \boldsymbol{w}^{ij}
 - $P_{\text{rec}}[s_{t+1}^j = 1 | s_t^i = 1] = w^{ij}$
- external excitation:
 - Poisson process with rate \boldsymbol{h}
 - $P_{\text{ext}}[s_{t+1}^i = 1] = \lambda(h) = 1 e^{-h\Delta t}$
- network size N

Connection between network and process:

$$m = \mathbb{E}_i \left(\sum_j w^{ij} \right)$$

Branching network exhibits non-equilibrium phase transition

Consider all-to-all connected network (mean-field)

$$w^{ij} = w = \frac{m}{N}$$
 s.t. $m = \mathbb{E}_i \left(\sum_j w^{ij} \right)$

Branching network exhibits non-equilibrium phase transition

Consider all-to-all connected network (mean-field)

$$w^{ij} = w = \frac{m}{N}$$
 s.t. $m = \mathbb{E}_i \left(\sum_j w^{ij} \right)$

Dynamic range is maximal at non-equilibrium phase transition

 $\Delta = 10 \log_{10} \left[h(a_{0.9}) / h(a_{0.1}) \right]$

Kinouchi & Copelli, Nat. Phys. (2006)

Dynamic range is maximal at non-equilibrium phase transition

 $\Delta = 10 \log_{10} \left[h(a_{0.9}) / h(a_{0.1}) \right]$

Kinouchi & Copelli, Nat. Phys. (2006)

Dynamic range is maximal at non-equilibrium phase transition

 $\Delta = 10 \log_{10} \left[h(a_{0.9}) / h(a_{0.1}) \right]$

 $\Delta = 10 \log_{10} \left[h(a_{0.9}) / h(a_{0.1}) \right]$

discriminable interval 1 average activity a $\Delta = 10 \log_{10} \left[h(a_{0.9}) / h(a_{0.1}) \right]$ 0.5m = 1.2= 0discriminable 0 interval 10^{-2} 10^{-6} 10^{-4} 10^{0} average external input h0.5Branching network: 0 analytic and numeric 10^{-2} 10^{-6} 10^{-4} 10^{0} average external input h

average activity a

discriminable interval 1 average activity a $\Delta = 10 \log_{10} \left[h(a_{0.9}) / h(a_{0.1}) \right]$ 0.5m = 1.2= 0discriminable 0 interval 10^{-6} 10^{-4} 10^{-2} 10^{0} average external input haverage activity adiscriminable interval (h)branching network 0.5 10^{-3} 0 10^{-6} 10^{-2} 10^{-4} 10^{0} 10^{-6} average external input h0.9 0 0.99branching parameter m

external coalescence

external coalescence recurrent coalescence

Motivation to approximate a branching process

Motivation to approximate a branching process

$$\begin{aligned} P_{\rm rec}[s_{t+1}^{j} = 1 | s_{t}^{i} = 1] &= w = \frac{m}{N} \\ P_{\rm ext}[s_{t+1}^{i} = 1] &= \lambda(h) \end{aligned}$$

Motivation to approximate a branching process

$$P_{\text{rec}}[s_{t+1}^{j} = 1 | s_{t}^{i} = 1] = w = \frac{m}{N}$$
$$P_{\text{ext}}[s_{t+1}^{i} = 1] = \lambda(h)$$

Probability to activate neuron i given that A_t neurons are active:

$$P[s_t^i = 1 | A_t, w, h] = 1 - (1 - w)^{A_t} (1 - \lambda(h)) = p(A_t)$$

Motivation to approximate a branching process

$$P_{\text{rec}}[s_{t+1}^{j} = 1 | s_{t}^{i} = 1] = w = \frac{m}{N}$$
$$P_{\text{ext}}[s_{t+1}^{i} = 1] = \lambda(h)$$

Probability to activate neuron i given that A_t neurons are active:

$$P[s_t^i = 1 | A_t, w, h] = 1 - (1 - w)^{A_t} (1 - \lambda(h)) = p(A_t)$$

$$\langle A_{t+1} | A_t \rangle = Np(A_t)$$

Motivation to approximate a branching process

$$P_{\text{rec}}[s_{t+1}^{j} = 1 | s_{t}^{i} = 1] = w = \frac{m}{N}$$
$$P_{\text{ext}}[s_{t+1}^{i} = 1] = \lambda(h)$$

Probability to activate neuron i given that A_t neurons are active:

$$P[s_t^i = 1 | A_t, w, h] = 1 - (1 - w)^{A_t} (1 - \lambda(h)) = p(A_t)$$

$$\langle A_{t+1}|A_t\rangle = Np(A_t) \stackrel{!}{=} mA_t + N\lambda(h)$$

Motivation to approximate a branching process

$$P_{\text{rec}}[s_{t+1}^{j} = 1 | s_{t}^{i} = 1] = w = \frac{m}{N}$$
$$P_{\text{ext}}[s_{t+1}^{i} = 1] = \lambda(h)$$

Probability to activate neuron i given that A_t neurons are active:

$$P[s_t^i = 1 | A_t, w, h] = 1 - (1 - w)^{A_t} (1 - \lambda(h)) = p(A_t)$$

$$\approx w A_t + \lambda(h) + \frac{w^2 A_t^2}{2} - \lambda(h) w A_t$$

$$\langle A_{t+1}|A_t\rangle = Np(A_t) \stackrel{!}{=} mA_t + N\lambda(h)$$

Motivation to approximate a branching process

$$P_{\text{rec}}[s_{t+1}^{j} = 1 | s_{t}^{i} = 1] = w + \frac{m}{N}$$
$$P_{\text{ext}}[s_{t+1}^{i} = 1] = \lambda(h)$$

Probability to activate neuron i given that A_t neurons are active:

$$P[s_t^i = 1 | A_t, w, h] = 1 - (1 - w)^{A_t} (1 - \lambda(h)) = p(A_t)$$

$$\approx w A_t + \lambda(h) + \frac{w^2 A_t^2}{2} - \lambda(h) w A_t$$

$$\langle A_{t+1}|A_t\rangle = Np(A_t) \stackrel{!}{=} mA_t + N\lambda(h)$$

Motivation to approximate a branching process

$$P_{\text{rec}}[s_{t+1}^{j} = 1 | s_{t}^{i} = 1] = w - \frac{m}{N}$$
$$P_{\text{ext}}[s_{t+1}^{i} = 1] = \lambda(h)$$

To compensate coalescence events we need adaptive synaptic weights

$$\widetilde{w}_{\rm cc}(A_t) = 1 - \left(1 - \frac{mA_t}{N(1 - \lambda(h))}\right)^{1/A_t}$$

Motivation to approximate a branching process

$$P_{\text{rec}}[s_{t+1}^{j} = 1 | s_{t}^{i} = 1] = w + \frac{m}{N}$$
$$P_{\text{ext}}[s_{t+1}^{i} = 1] = \lambda(h)$$

To compensate coalescence events we need adaptive synaptic weights

$$\widetilde{w}_{\rm cc}(A_t) = 1 - \left(1 - \frac{mA_t}{N(1 - \lambda(h))}\right)^{1/A_t}$$

But the network cannot have access to \boldsymbol{h}

$$w_{\rm cc}(A_t) = 1 - \left(1 - \frac{mA_t}{N}\right)^{1/A_t}$$

Applications

Tailored neural response to input statistics

Applications

Tailored neural response to input statistics

• is implemented, e.g., in auditory midbrain of guinea pigs

Applications

Tailored neural response to input statistics

- is implemented, e.g., in auditory midbrain of guinea pigs
- may be beneficial for reservoir computing applications

Dean et al., Nat. Neurosci., 2005 Tanaka et al., arxiv, 2018

• Discriminable interval is constraint in branching network

- Discriminable interval is constraint in branching network
- Compensating coalescences leads to specific discriminable intervals

- Discriminable interval is constraint in branching network
- Compensating coalescences leads to specific discriminable intervals
- The generic idea may be exploited for reservoir computing and could be physiologically implemented

- Discriminable interval is constraint in branching network
- Compensating coalescences leads to specific discriminable intervals
- The generic idea may be exploited for reservoir computing and could be physiologically implemented

Announcement:

Focus session on "**Collective dynamics in neural networks**" at upcoming DPG Spring meeting (31.03.-05.04.2019)

- Discriminable interval is constraint in branching network
- Compensating coalescences leads to specific discriminable intervals
- The generic idea may be exploited for reservoir computing and could be physiologically implemented

Announcement:

Focus session on "**Collective dynamics in neural networks**" at upcoming DPG Spring meeting (31.03.-05.04.2019)

Appendix

Experiment:

Experiment:

Neural avalanches in coalescence compensated network

