
Extending the dynamic range by an ensemble of neural
networks

Johannes Zierenberg1, Jens Wilting1, Viola Priesemann1, Anna Levina2

1 Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
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What is the dynamic range?

Psychometric response curve to sound level:
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From perception to neural population response

• correlation:
behavior and single-neuron response

• single neuron response
adjusted to input statistics

• population of neurons
increases dynamic range

Britten et al., J. Neurosci. (1992)
Dean et al., Nat. Neurosci. (2005)
Wachowiak & Cohen, Neuron (2001)
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From perception to neural population response

• correlation:
behavior and single-neuron response

• single neuron response
adjusted to input statistics

• population of neurons
increases dynamic range

sound level discrimination
in auditory midbrain of guinea pig

Britten et al., J. Neurosci. (1992)
Dean et al., Nat. Neurosci. (2005)

Wachowiak & Cohen, Neuron (2001)
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From perception to neural population response

• correlation:
behavior and single-neuron response

• single neuron response
adjusted to input statistics

• population of neurons
increases dynamic range

odor discrimination
in mouse olfactory bulb glomeruli

Britten et al., J. Neurosci. (1992)
Dean et al., Nat. Neurosci. (2005)
Wachowiak & Cohen, Neuron (2001)
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Neural population dynamics viewed as a branching process

Kinouchi & Copelli, Nat. Phys. (2006)
Zierenberg et al., Phys. Rev. X (2018)
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Neural population dynamics viewed as a branching process

Time discrete (∆t) activity propagation with external drive (H):

〈At+1|At〉 = mAt +H

The branching network:

• recurrent excitation:
• connectivity matrix wij

• Prec[sjt+1 = 1|sit = 1] = wij

• external excitation:
• Poisson process with rate h
• Pext[s

i
t+1 = 1] = λ(h) = 1− e−h∆t

• network size N

Connection between network and process:

m = Ei

(∑
j w

ij
)

Kinouchi & Copelli, Nat. Phys. (2006)
Zierenberg et al., Phys. Rev. X (2018)
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Branching network exhibits
non-equilibrium phase transition

Consider all-to-all connected network (mean-field)

wij = w =
m

N
s.t. m = Ei

(∑
j
wij
)

Muñoz, Rev. Mod. Phys. (2018)
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Dynamic range is maximal at
non-equilibrium phase transition

∆ = 10 log10 [h(a0.9)/h(a0.1)]
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Dynamic range vs discriminable interval

∆ = 10 log10 [h(a0.9)/h(a0.1)]

0

0.5

1

10−6 10−4 10−2 100

∆

a
v
er

a
g
e

a
ct

iv
it
y
a

average external input h

0

0.5

1

10−6 10−4 10−2 100

m = 0m = 1

m = 1.2

a

v

e

r

a

g

e

a




t

i

v

i

t

y

a

average external input h

dis
riminable

interval

8



Dynamic range vs discriminable interval

∆ = 10 log10 [h(a0.9)/h(a0.1)]

0

0.5

1

10−6 10−4 10−2 100

∆

a
v
er

a
g
e

a
ct

iv
it
y
a

average external input h

discriminable
interval

0

0.5

1

10−6 10−4 10−2 100

m = 0m = 1

m = 1.2

a

v

e

r

a

g

e

a




t

i

v

i

t

y

a

average external input h

dis
riminable

interval

8



Dynamic range vs discriminable interval

∆ = 10 log10 [h(a0.9)/h(a0.1)]
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Dynamic range vs discriminable interval
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Constraint discriminable interval as a result of coalescence
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Coalescence can be compensated by
adaptive synaptic weights

Motivation to approximate a branching process

Prec[s
j
t+1 = 1|sit = 1] = w =

m

N

Pext[s
i
t+1 = 1] = λ(h)

Probability to activate neuron i given that At neurons are active:

P
[
sit = 1|At, w, h

]
= 1− (1− w)At (1− λ(h)) = p(At)

≈ wAt + λ(h) +
w2A2

t

2
− λ(h)wAt
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Motivation to approximate a branching process

Prec[s
j
t+1 = 1|sit = 1] = w =

m

N

Pext[s
i
t+1 = 1] = λ(h)

To compensate coalescence events we need adaptive synaptic weights

w̃cc(At) = 1−
(

1− mAt

N(1− λ(h))

)1/At
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Coalescence-compensated network has
specific discriminable intervals
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Coalescence-compensated network has
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Coalescence-compensated network has
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Ensemble of networks: Tailor neural response to task
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Applications

Tailored neural response to input statistics

• is implemented, e.g., in auditory midbrain of guinea pigs

• may be beneficial for reservoir computing applications

Dean et al., Nat. Neurosci., 2005

Tanaka et al., arxiv, 2018
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Summary
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• Discriminable interval is constraint
in branching network
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Neural avalanches in experiments and branching model

16



Neural avalanches in experiments and branching model

Experiment:

Model:

100 102 104

avalanche size s

10−9

10−7

10−5

10−3

10−1 ∼ s−3/2

P (s)

100 102 104

avalanche size s

10−9

10−7

10−5

10−3

10−1 ∼ s−3/2

P (s)

16



Neural avalanches in experiments and branching model

Experiment:

Model:

100 102 104

avalanche size s

10−9

10−7

10−5

10−3

10−1 ∼ s−3/2

P (s)

100 102 104

avalanche size s

10−9

10−7

10−5

10−3

10−1 ∼ s−3/2

P (s)

16



Neural avalanches in experiments and branching model

Experiment: Model:

100 102 104

avalanche size s

10−9

10−7

10−5

10−3

10−1 ∼ s−3/2

P (s)

100 102 104

avalanche size s

10−9

10−7

10−5

10−3

10−1 ∼ s−3/2

P (s)

16



Neural avalanches in coalescence compensated network

At criticality:
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