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Dynamic range is maximal at
non-equilibrium phase transition
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Dynamic range is maximal at
non-equilibrium phase transition

A = 10logyg [h(ao.9)/h(ao.1)]
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average activity a

Dynamic range vs discriminable interval
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Dynamic range vs discriminable interval

A = 10log;, [h(ao.9)/h(ao1)]

discriminable A
interval
i aeeeeeeeeeeeeee
0.5 4
0 aeeeweee@e’ﬁe
1076 1074 1072 10°

average external input h

discriminable
interval ———=======
14 e

0.5 A

average activity a

0

107¢ 1074 102 10°
average external input A

Branching network:
analytic and numeric



average activity a

Dynamic range vs discriminable interval
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Dynamic range vs discriminable interval
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Ensemble of networks: Tailor neural response to task
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Applications

Tailored neural response to input statistics
e is implemented, e.g., in auditory midbrain of guinea pigs

e may be beneficial for reservoir computing applications
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Neural avalanches in coalescence
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