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Random-field Ising model

The random-field Ising model is a very well studied system (see preceding talk by
Nikos).
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Random-field Ising model

The random-field Ising model is a very well studied system (see preceding talk by
Nikos).
Some key results:

@ no critical point in 2D, but crossover with defined breakup length

@ continuous transition in 3D, two or three exponents?

o failure of dimensional reduction in low dimensions, restoration at 5-6
dimensions

@ behaviour of the bimodal model not so clear
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Random-field Ising model

The random-field Ising model is a very well studied system (see preceding talk by
Nikos).
Some key results:

@ no critical point in 2D, but crossover with defined breakup length

@ continuous transition in 3D, two or three exponents?

o failure of dimensional reduction in low dimensions, restoration at 5-6
dimensions

@ behaviour of the bimodal model not so clear

Possible generalisations:

@ continuous spins (XY, Heisenberg etc.): some field-theoretic and numerical
results

@ random anisotropies

@ more than two states: random-field Potts model (RFPM)

M. Weigel (Coventry) CompPhys18



Random-field Potts model

Very little work to date:

g=2 (Ising)

Blankschtein, Shapir, Aharony, 1984
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Random-field Potts model

Very little work to date:

Hnr a
\/ ¢=3
\‘\:: qpm
(@) 'F q=2 (Ising)

Goldschmidt and Xu, 1985/86
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Random-field Potts model

Very little work to date:

Ist order

number of states q
>

Esing
. 2nd order |
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dimension d

Goldschmidt and Xu, 1985/86
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Random-field Potts model

Very little work to date:

number of states q
>

Esing

dimension d

Goldschmidt and Xu, 1985/86

Most recent study by Eichhorn and Binder (1995/96): possible 2nd order transition for
3D g = 3 model.
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Maximum flows and graph cuts

Split up Ising model Hamiltonian,
—H = Jysisi= W+ W — WE = K- 2w, (1)
{if)
where K = Zw) Jij» and

- Eis
W= > g W= Jin WE=D"J; )
(i) Cij) Cij)
si=sj=+1 si=sj=—1 Si7sj

M. Weigel (Coventry) CompPhys18  4/19



Maximum flows and graph cuts

Split up Ising model Hamiltonian,

—H = Jysisi= W+ W — W
(i)

where K =37 ., Jj, and

W = .]I'j7 W= = .]I'j7

(i) Cij)
si=sj=+1 si=sj=—1
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Maximum flows and graph cuts (2)
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The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where
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@ all up spins are connected to the source, all down spins are connected to the sink
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Maximum flows and graph cuts (2)

The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where
@ all up spins are connected to the source, all down spins are connected to the sink

@ a cut separates the two classes of sites, the energy of the configuration corresponds to
the weight of the cut
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The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where
@ all up spins are connected to the source, all down spins are connected to the sink

@ a cut separates the two classes of sites, the energy of the configuration corresponds to
the weight of the cut

@ due to the max-flow—min-cut theorem, the ground-state (min-cut) configuration occurs
for maximum flow through the network
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Maximum flows and graph cuts (2)

The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where
@ all up spins are connected to the source, all down spins are connected to the sink

@ a cut separates the two classes of sites, the energy of the configuration corresponds to
the weight of the cut

@ due to the max-flow—min-cut theorem, the ground-state (min-cut) configuration occurs
for maximum flow through the network

@ there are efficient (polynomial time) algorithms to solve maximum flow exactly
(Ford-Fulkerson, Edmonds-Karp, push relabel, ...)
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Graph cuts and the Potts model

We consider the Hamiltonian

—1
H=—)D by — > qz 7 85y
a=0

Cif) i
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Graph cuts and the Potts model

We consider the Hamiltonian

H=—)D Sos— ZZ#‘ -

{ij) i
The g = 2 case is equivalent to the RFIM,

ZU,G,+1]——Z[(h hi)oi + (b} + b)),

(ij)
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Graph cuts and the Potts model

We consider the Hamiltonian

q—1
H=—JY Gy — DD hosa,
a=0

{ij) i
The g = 2 case is equivalent to the RFIM,
’H——— U,a,+1]——Z[(h h )i + (b + h;)],
Cif)

The ground-state problem for ¢ > 2 corresponds to a multi-terminal flow problem that is NP
hard.
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Graph cuts and the Potts model

We consider the Hamiltonian

q—1
H=—JY Gy — DD hosa,
a=0

{ij) i
The g = 2 case is equivalent to the RFIM,
’H——— U,a,+1]——Z[(h h )i + (b + h;)],
Cif)

The ground-state problem for ¢ > 2 corresponds to a multi-terminal flow problem that is NP
hard.

We need to revert to approximation methods.
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:

E({S,}) = Z V,'J'(S,'7 Sj) a4 Z Di(Si)-
ij i
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:
E({S,}) = Z V,'J'(S,'7 Sj) “F Z D,'(S,').
ij i

It is based on solving an effective two-terminal (Ising) problem by freezing some degrees of

freedom.

CompPhys18
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Approximate graph

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:
E({S,}) = Z V,'J'(S,'7 Sj) “F Z D,'(S,').
ij i

It is based on solving an effective two-terminal (Ising) problem by freezing some degrees of

freedom.

@ a-(-swap move
picks two labels a # 8 € {0, 1,..., g — 1} and freeze all labels apart from « and 3
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:
E({S,}) = Z V,'J'(S,'7 Sj) “F Z D,'(S,').
ij i

It is based on solving an effective two-terminal (Ising) problem by freezing some degrees of

freedom.

@ « expansion move
pick and freeze a label a; either keep or flip remaining pixels into « state
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:
E({S,}) = Z V,'J'(S,'7 Sj) “F Z D,'(S,').
ij i

It is based on solving an effective two-terminal (Ising) problem by freezing some degrees of

freedom.

@ « expansion move
pick and freeze a label a; either keep or flip remaining pixels into « state

T ¥

Works well in computer vision (paper has 8000 citations). How about the RFPM?
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Benchmark: parallel tempering

No ground truth available, how to benchmark the graph-cut method?
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Benchmark: parallel tempering

No ground truth available, how to benchmark the graph-cut method?

Parallel tempering:

@ in principle converges to equilibrium

T1
@ optimize temperature protocol for
optimum tunneling, based on T2 T2
Tm = m77 Tnorm + Tmim T3 T3
where T4 Ta
T _ Tmax - Tmin
norm (NT _ ‘])T] .
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Benchmark: parallel tempering

No ground truth available, how to benchmark the graph-cut method?

Parallel tempering:

@ in principle converges to equilibrium

T1
@ optimize temperature protocol for
optimum tunneling, based on T2 T2
Tm = m77 Tnorm + Tmim T3 T3
where T4 Ta
T _ Tmax - Tmin
norm (NT _ ‘])T] .

Ensure ground states are found almost always using some form of self-consistent
bootstrapping procedure.
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Benchmark: parallel tempering (2)

Ground-state procedure in parallel tempering:

0
t, >10t,

Ensure that simulation time T is at least 10 times the onset time.
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Benchmark: parallel tempering (3)

Onset times for systems of size L x L and numbers of Potts states q.
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Benchmark: parallel tempering (3)

Onset times for systems of size L x L and numbers of Potts states q.

107 1 108 T : T
Mean m 7 Mean =
109 Median e v 10'F Median e
105 106 s
— —10° -
0104 =)
Sk &104 = : [ ]
10° 103F "o
102 102jp(® (b)
1 1
102345878910 10° 56 %:4 3540

Exponential increase of hardness with L, maybe slightly slower with q.
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Graph cuts: histograms

Distribution of energies found:
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Graph cuts: histograms (2)

Width of distributions:

10—

w  0.06 ]

Z 0.04
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How to compare these methods?
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Comparison

How to compare these methods?

Tune run-time of parallel tempering to yield the same success probability as graph
cuts.
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Comparison

How to compare these methods?

Tune run-time of parallel tempering to yield the same success probability as graph
cuts.
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Repeated runs can be used for both methods to increase success probability,

P({hi'}) = 1= [1 = P({H}]"
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Accuracies:

Emin - EO
Ey |
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Comparison (2)

Accuracies:
Emin - EO
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Comparison (3)

Overlaps:
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Comparison (3)

Overlaps:

1 N
0- NZ@,_,S;].

=1

Je 1.04 T T T T
T T T T T T 1T GC %
1 GC  x]
) PT o 3:2 ® PT o
® 096 F @4 -
09F % o o 4 x ®
§ - @ ® 0 g 4 g X o % ® »
0.8} ¥ T 0.88 | ok
- *
0.7F .
PR S P P TP T 0.8 Lu 1 1 1 1
2 345 g 7 8 910 8 16 2% 32 40

M. Weigel (Coventry) CompPhys18  15/19



Comparison (4)

Run times
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Results: 2D model

RFIM: no long-range order at finite temperatures, but breakup length (Binder, 1982):

Ly ~ exp(A/A) or exp(A/A?)
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RFIM: no long-range order at finite temperatures, but breakup length (Binder, 1982):
Ly ~ exp(A/A) or exp(A/A?)

Potts case:

10y 15 2 2.5
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Results: 2D model

RFIM: no long-range order at finite temperatures, but breakup length (Binder, 1982):
Ly ~ exp(A/A) or exp(A/A?)

Potts case:

10y 15 2 2.5

In 2D, q = 2, 3, 4 models appear to behave quite similarly.
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Results: 3D model

Some preliminary results for the 3D g = 3 RFPM:
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Binder cumulant
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Results: 3D model

Some preliminary results for the 3D g = 3 RFPM:

3

2.5

15

specific heat
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Results: 3D model

Some preliminary results for the 3D g = 3 RFPM:

s 0 5 10 15 20 25 30
1/v

(A-A)L

magnetization
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Conclusions

Graph-cut method:
@ approximate solution of the multi-terminal flow problem
o significantly faster than parallel tempering at same success probability on CPU

@ asymptotically faster also for optimized GPU implementation of PT
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Conclusions

Graph-cut method:
@ approximate solution of the multi-terminal flow problem
o significantly faster than parallel tempering at same success probability on CPU

@ asymptotically faster also for optimized GPU implementation of PT

Random-field Potts model:
o behavior apparently quite similar to RFIM in 2D
o issue of exact scaling of breakup length still unresolved
@ preliminary study of 3D g = 3 RFPM shows new universality class
°

potentially rich phase diagram in (g, T, h) space to be explored
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Conclusions

Graph-cut method:
@ approximate solution of the multi-terminal flow problem
o significantly faster than parallel tempering at same success probability on CPU

@ asymptotically faster also for optimized GPU implementation of PT

Random-field Potts model:
o behavior apparently quite similar to RFIM in 2D
o issue of exact scaling of breakup length still unresolved
@ preliminary study of 3D g = 3 RFPM shows new universality class

@ potentially rich phase diagram in (q, T, h) space to be explored

M. Kumar, R. Kumar, MW, V. Banerjee, W. Janke, and S. Puri,
Phys. Rev. E 97, 053307 (2018)

M. Kumar et. al., in preparation
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