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Random-field Ising model

The random-field Ising model is a very well studied system (see preceding talk by
Nikos).

Some key results:

no critical point in 2D, but crossover with defined breakup length

continuous transition in 3D, two or three exponents?

failure of dimensional reduction in low dimensions, restoration at 5–6
dimensions

behaviour of the bimodal model not so clear

Possible generalisations:

continuous spins (XY , Heisenberg etc.): some field-theoretic and numerical
results

random anisotropies

more than two states: random-field Po�s model (RFPM)
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Random-field Po�s model

Very li�le work to date:

Blankschtein, Shapir, Aharony, 1984
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Random-field Po�s model

Very li�le work to date:

Goldschmidt and Xu, 1985/86

Most recent study by Eichhorn and Binder (1995/96): possible 2nd order transition for
3D q = 3 model.
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Maximum flows and graph cuts

Split up Ising model Hamiltonian,

−H =
∑
〈ij〉

Jij sisj = W + + W− −W± = K − 2W±, (1)

where K =
∑
〈ij〉 Jij , and

W + =
∑
〈ij〉

si=sj=+1

Jij, W− =
∑
〈ij〉

si=sj=−1

Jij, W± =
∑
〈ij〉
si 6=sj

Jij (2)

Then, a ground state is given by a
configuration with minimal cut W±,
which divides the spins between the
“up” and “down” states.
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Maximum flows and graph cuts (2)

The RFIM can be mapped onto a maximum flow problem (Picard & Ratli�, 1975) where

all up spins are connected to the source, all down spins are connected to the sink

a cut separates the two classes of sites, the energy of the configuration corresponds to
the weight of the cut

due to the max-flow–min-cut theorem, the ground-state (min-cut) configuration occurs
for maximum flow through the network

there are e�icient (polynomial time) algorithms to solve maximum flow exactly
(Ford-Fulkerson, Edmonds-Karp, push relabel, ...)
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Graph cuts and the Po�s model

We consider the Hamiltonian

H = −J
∑
〈ij〉

δsi ,sj −
∑

i

q−1∑
α=0

hαi δsi ,α,

The q = 2 case is equivalent to the RFIM,

H = − J
2

∑
〈ij〉

[σiσj + 1]− 1
2

∑
i

[(h+
i − h−i )σi + (h+

i + h−i )],

The ground-state problem for q > 2 corresponds to a multi-terminal flow problem that is NP
hard.

We need to revert to approximation methods.
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:

E({si}) =
∑
i,j

Vij(si, sj) +
∑

i

Di(si).

It is based on solving an e�ective two-terminal (Ising) problem by freezing some degrees of
freedom.
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E({si}) =
∑
i,j

Vij(si, sj) +
∑

i

Di(si).

It is based on solving an e�ective two-terminal (Ising) problem by freezing some degrees of
freedom.

α-β-swap move
picks two labels α 6= β ∈ {0, 1, . . . , q − 1} and freeze all labels apart from α and β
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:

E({si}) =
∑
i,j

Vij(si, sj) +
∑

i

Di(si).

It is based on solving an e�ective two-terminal (Ising) problem by freezing some degrees of
freedom.

α expansion move
pick and freeze a label α; either keep or flip remaining pixels into α state

Works well in computer vision (paper has 8000 citations). How about the RFPM?
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Benchmark: parallel tempering

No ground truth available, how to benchmark the graph-cut method?

Parallel tempering:

in principle converges to equilibrium

optimize temperature protocol for
optimum tunneling, based on

Tm = mηTnorm + Tmin,

where

Tnorm =
Tmax − Tmin

(NT − 1)η
.

T1

T2

T3

T4

T1

T2

T3

T4

Ensure ground states are found almost always using some form of self-consistent
bootstrapping procedure.
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Benchmark: parallel tempering (2)

Ground-state procedure in parallel tempering:

t

E

E
0

t
0

≥10t
0

Ensure that simulation time T is at least 10 times the onset time.
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Benchmark: parallel tempering (3)

Onset times for systems of size L× L and numbers of Po�s states q.

Exponential increase of hardness with L, maybe slightly slower with q.
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Graph cuts: histograms

Distribution of energies found:
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Graph cuts: histograms (2)

Width of distributions:
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Comparison

How to compare these methods?

Tune run-time of parallel tempering to yield the same success probability as graph
cuts.

10−4

10−3

10−2

10−1

100

2 3 4 5 6 7 8 9 10

GC
PT

P
0

q

10−3

10−2

10−1

100

8 16 24 32 40

GC
PT

P
0

L

Repeated runs can be used for both methods to increase success probability,

Ps({hαi }) = 1− [1− P0({hαi })]m.
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Comparison (2)

Accuracies:
ε =

Emin − E0
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Comparison (3)

Overlaps:
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1
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Comparison (4)

Run times
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Results: 2D model

RFIM: no long-range order at finite temperatures, but breakup length (Binder, 1982):

Lb ∼ exp(A/∆) or exp(A/∆2)

Po�s case:
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In 2D, q = 2, 3, 4 models appear to behave quite similarly.
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Results: 3D model

Some preliminary results for the 3D q = 3 RFPM:
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Results: 3D model

Some preliminary results for the 3D q = 3 RFPM:
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Conclusions

Graph-cut method:

approximate solution of the multi-terminal flow problem

significantly faster than parallel tempering at same success probability on CPU

asymptotically faster also for optimized GPU implementation of PT

Random-field Po�s model:

behavior apparently quite similar to RFIM in 2D

issue of exact scaling of breakup length still unresolved

preliminary study of 3D q = 3 RFPM shows new universality class

potentially rich phase diagram in (q, T , h) space to be explored

M. Kumar, R. Kumar, MW, V. Banerjee, W. Janke, and S. Puri,

Phys. Rev. E 97, 053307 (2018)

M. Kumar et. al., in preparation
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