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Phenomenological Models on Collapse Kinetics

Hydrodynamic Dissipation of surface energy

De Gennes’
sausage model
(1985)

pear necklace model: Forma-
tion of nascent clusters fol-
lowed by coarsening of clus-
ters to form bigger clusters
and eventually a single glob-
ule

A. Halperin and P.M. Goldbart, Phys. Rev. E 61, 565 (2000)
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Available Simulations Results

Monte Carlo Simulations of both lattice and off-lattice models
produce the “pearl-necklace” picture

Molecular dynamics simulations both with implicit and explicit
solvent molecules yield the same phenomenological picture.

Even relatively recent result using Dissipative Particle Dynamics
(DPD) reproduces the same picture

Although in each of these cases the overall collapse-time scalings are
different depending on whether hydrodynamics is preserved or not.

Idea: Rather than changing only the qualilty of the solvent from good to
poor, one can also think about other general properties of the solvent
that control energy dissipation, e.g., viscosity.
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The Model

Bonded potential: VFENE(r) = −K
2 R

2 ln
(
1− [(r − r0)/R]2

)
;

r0 = 0.7, R = 0.3, and K = 40

Non-Bonded intercation:
Both for polymer and solvent beads

V ∗LJ(r) =

{
VLJ(r)− VLJ(rc) r < rc

0 else

VLJ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
, where σ = r0/21/6

good solvent: rc = 21/6σ for sol-sol,sol-mon,mon-mon

poor solvent: rc = 21/6σ for sol-sol,sol-mon and rc = 2.5σ for mon-mon
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Explicit Solvent Model

Factors taken into account

In reality, while a polymer moves in a solvent experiences friction

Thereby, the disspation of energy is dependent on the viscosity of
the solvent

Preservation of hydrodynamics (is what makes a fluid fluid)

Possible Ways

Langevin Dynamics (Mesoscopic)

Brownian Dynamics

Dissipative Particle Dynamics
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Construction of an Explicit Solvent Model

Langevin Equation:

m d2~r
dt2 = −γ d~r

dt + ~FR + ~FC

γ is the friction coffiecient

~FR is a random force that accounts for thermal fluctuations such that
〈 ~FR(t) ~FR(t ′)〉 =

√
2kTγδ(t − t ′) and 〈 ~FR(t)〉 = 0

~FC conservative forces due to particle particle intercation

Disadvantages: Only thermal fluctuation but no hydrodynamics. Also
one cannot use large dt.
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Construction of an Explicit Solvent Model

Brownian Dynamics:
Neglect the inertial term in the Langevin equation and solve the
corresponding Smoluchowski equation. As such, only particle positions
enter

d~r
dt = ~FCD/kT + ~FR(t)/γ

implies the for a particle i , ~ri (t + ∆t) = ~ri (t) + ∆t
∑

j
~µij . ~Fc

kT + δ ~FR

~µij is the mobility tensor
If ~µij = 0 for i 6= j then no HI

Introducing HI is cumbersome as one has to consider pairwise terms
considering Oseen tensor

A.J. Banchio and J.F. Brady J. Chem. Phys. 118, 10323 (2003)
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Dissipative Particle Dynamics

P.J. Hoogerbrugge and J.M.V.A. Koelman, Europhys. Lett. 19, 155
(1992)
J.M.V.A. Koelman and P.J. Hoogerbrugge and , Europhys. Lett. 21, 363
(1993)

The formulation usually used now is due to Espanol and Warren
P. Espanol and P.B. Warren, Europhys. Lett. 30, 191, (1995).
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Dissipative Particle Dynamics

Newton’s equation of motion:

d~r
dt = ~vi and d~pi

dt = ~fi

~fi = ~FC + ~FR + ~FD

~FC : Conservative forces, i.e., due to intercation between particles
~FR : Random forces, i.e., due to thermal fluctuations
~FD : Nonconservative or Dissipative forces

~FD = ~f Dij = −γwd(rij)(~rij . ~vij)~rij

~rij = ~ri − ~rj and ~vij = ~vi − ~vj
Component of relative velocity along line of
centres

wd(rij) is weight function that is zero for rij > rc
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Dissipative Particle Dynamics

~FR = ~f Rij = Awr (rij)θij ~rij

A: Noise Amplitude
θij is Gaussian distributed with zero mean and unit variance
wr (rij) is weight function that is zero for rij > rc

To have the correct canonical distribution function (constant NVT) the
dissipative (cools the system) and random (heats the system) forces are
related:

wd(rij) = [wr (rij)]2 and A2 = 2γkT

Popular form of the weigth function:

wd(rij) =
(

1− rij
rc

)
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Dissipative Particle Dynamics

Advantages

Without FD and FR it is simply molecular dynamics

Provides a canonical distribution hence can act as thermostat for
any conservative soft potential

It is local, conserves momenta and Galilean invarient. Hence,
hydrodynamics is preserved

It is possible to tune the viscosity of the medium by varying γ in FD

Disadvantages

Solving the DPD equations of motion is an issue because of the
velocity dependent FD

dt needs to be much small to minimize the error hence
computationally expensive
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Our Approach: Lowe-Andersen

C.P. Lowe, Europhys. Lett., 47, 145 (1999)

In the spirit of Andersen thermostat:

Using relative velocities instead of velocities

Collisions exchange relative momentum between pair of particles by
taking a new relative velocity from the Maxwellian distribution for
relative velocities

Component of relative velocity along line of centres like in DPD

detail balance is satisfied along with momenta conservation
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Lowe-Andersen Approach

Simulation details:
cubic box of size L = 1.25N3/5, N is the no. of monomers

Density of the solvent beads ρ = 0.7
rc for the thermostat = rc for good solvent = 21/6σ
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Equilibrium Static Properties in Good Solvent

Radius of Gyration:

R2
g =

1

2N2

∑
i,j

(ri − rj)
2

Fitting using the form:

Rg = ANν

yields ν ∈ [0.58, 61]
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Equilibrium Dynamic Properties

Trajectory of the the centre of mass of a polymer
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Equilibrium Dynamic Properties

MSD =
〈

[ ~Rcm(t)− ~Rcm(t0)]2
〉

ballistic regime: MSD ∼ t2

diffusive regime: MSD = 6Dt (Einstein Equation in 3-d)
where D is the diffusion constant for the CM of the polymer
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Equilibrium Dynamic Properties

Scaling of the diffusion constant with N

Zimm’s scaling:
D ∼ N0.6

valid for hydrodynamic in-
tercations
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Equilibrium Dynamic Properties

diffusion constant: Dependence on Γ

equivalent to the results
on ideal gas (Koopman
and Lowe)
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A Glimpse of the collaspe dynamics


