

Steady state of a protein-ligand system in a temperature gradient investigated with Wang-Landau simulations

Jutta Luettmer-Strathmann

Departments of Physics and Chemistry, The University of Akron, Akron, OH

- Thermodiffusion Ludwig-Soret effect
- Chemical contribution to the Soret coefficient
- Proteins HP model
- Square-well potentials
- Wang-Landau algorithm for the density of states
- Chain collapse and ligand binding
- 2-d Wang-Landau for Soret effect

CompPhys18, Universität Leipzig, November 29 – December 1, 2018

Thermodiffusion — Ludwig-Soret Effect

Fluid mixture with uniform temperature

under a temperature gradient $\delta T/L$

Mass flow due to temperature difference

$$J = -\rho D(\delta c - c(1 - c)S_T \delta T) / L$$

In the steady state

$$J = 0 \implies \delta c = -c(1-c)S_T \delta T$$

T = temperature

c = mass fraction of component 2

Soret coefficient of component 2:

$$S_T = -\frac{1}{c(1-c)}\frac{\delta c}{\delta T}$$

Chemical contribution to the Soret coefficient Two-chamber lattice model

Sum of states over all occupations $\{N_i^A\}$:

$$Q = \sum_{[N_i^A]} Z^A(\{N_i^A\}) Z^B(\{N_i - N_i^A\}), \quad i \in \{a, b, v\}$$

Calculate Q in exact enumeration by considering all possible occupations.

Average mass fractions of component *a* in chambers A and B

$$\left\langle c_{a}^{A} \right\rangle = \sum_{[N_{i}^{A}]} \frac{Z^{A}(\{N_{i}^{A}\})Z^{B}(\{N_{i}-N_{i}^{A}\})}{Q} c_{a}^{A}(\{N_{i}^{A}\}), \quad i \in \{a,b,v\}$$

$$\left\langle c_{a}^{B} \right\rangle = \sum_{[N_{i}^{A}]} \frac{Z^{A}(\{N_{i}^{A}\})Z^{B}(\{N_{i}-N_{i}^{A}\})}{Q} c_{a}^{B}(\{N_{i}^{A}\}), \quad i \in \{a,b,v\}$$
Soret coefficient of the alkane
$$S_{T} = -\frac{1}{c_{a}(1-c_{a})} \frac{\langle c_{a}^{A} \rangle - \langle c_{a}^{B} \rangle}{T^{A}-T^{B}}$$

- Determine occupation of a lattice with N = 5000 sites for the desired temperature, pressure, and composition.
- Perform exact enumeration for sum of states of two chambers with $N^A = N^B = 2500$ and accumulate mass fractions of the chambers.
- Evaluate including orientation-dependent interactions of the solvent
- Calculate S_T .

Benzene with linear alkanes at fixed T and x, experiment and theory

Benzene/alkane mixtures at T = 303 K, x = 0.5

P. Polyakov, J. Luettmer-Strathmann, and S. Wiegand, J. Phys. Chem. B 110, 2006, 26215-26224

Chemical contribution to the Soret coefficient

Two-chamber lattice model

Advantages:

- Consistent equation of state
- Includes compressibility effects
- Works with very small temperature gradients
- Reasonable prediction of chemical contributions to Soret coefficients

Disadvantages:

- Lattice model equations of state are valid in limited temperature/density ranges
- The lattice structure limits the possible interactions
- Exact enumerations are limited to small systems
- No dynamics, even if a different method is used for the model.

Source: Wikipedia

structures. PNAS 93, 11628 - 11633 (1996)

HP Model for Proteins

Key ideas:

- The native state of a globular protein is compact, but does not have the spatial order of a crystal. The denatured state has an open conformation.
- Amino acids may be classified as polar (P) and nonpolar (H).
- The folded state minimizes the interactions between hydrophobic (non-polar) residues and the polar solvent.

HP model:

- 1. A protein is modeled as a chain of N amino acids.
- 2. Each amino acid is either polar (P) or nonpolar (H).
- 3. Each contact between non-bonded H residues contributes a (free) energy ε < 0; the energy of the system is $E = \varepsilon N_{\rm HH}$, where $N_{\rm HH}$ is the number of H – H contacts.

Folding denatured

> Blue: polar residues Red: hydrophobic residues Grey: aqueous (polar) solvent

H. S. Chan and K. A. Dill, The protein folding problem, Physics Today, 46, 24 - 32 (1993)
K. A. Dill, *Theory for the folding and stability of globular proteins*. Biochemistry 24, 1501 – 1509 (1985).
K. F. Lau and K. A. Dill, *A lattice statistical mechanics model of the conformational and sequence spaces of proteins*. Macromolecules 22, 3986 – 3997 (1989)

Porcine Ribonuclease Inhibitor (RI): Image created by Robert Stewart from 2BNH. pbd file. Beta-sheet (yellow), alpha-helixes (purple), coils and turns (red).

Ribonuclease inhibitor (blue) Ribonuclease (red)

Yellow: polar residues Blue: hydrophobic residues

Square-well chain HP model

hard core diameter: σ well diameter: $\lambda = 1.15 \sigma$ bond length: $b = 0.8 \sigma$

H-H interactions: square well potential

P-H and P-P interactions: hard core potential

$$E_{ij} = \begin{cases} \infty \text{ for } r_{ij} < \sigma \\ \varepsilon \text{ for } \sigma \leq r_{ij} < \lambda \\ 0 \text{ for } r_{ij} \geq \lambda \end{cases}$$

$$E_{ij} = \begin{cases} \infty \text{ for } r_{ij} < \sigma \\ 0 \text{ for } r_{ij} \ge \sigma \end{cases}$$

Sequence: HPPHPPHPPH

Ground state (folded) energy 6ϵ , $\epsilon < 0$

Ground state energy 3ϵ , $\epsilon < 0$

Ligand and solvent

Ligand Sequence: HP

Solvent P Hardsphere solvent

Periodic boundary conditions

Simulation Method:

- Monte Carlo simulations with <u>Wang-Landau</u> algorithm
- Goal: find the density of states g ∝ number of states for a given energy E and evaluate the entropy S(E) = k_B ln g(E) or evaluate the canonical partition function

Simulation Method:

- Monte Carlo simulations with <u>Wang-Landau</u> algorithm
- Microstate: coordinates of all bead
- Macrostate: energy E_{1i} (side 1) and energy E_{2i} (side 2)
- Acceptance criterion:

$$p\left((E_{1i}, E_{2j}) \to (E'_{1i}, E'_{2j})\right) = \min\left(\frac{g(E_{1i}, E_{2j})}{g(E'_{1i}, E'_{2j})}, 1\right)$$

 $g(E_i, V_j) =$ current estimate for the density of states

• After each elementary move, update the density of states by a refinement factor *f* and the histogram of visits by unity

$$g(E'_{1i}, E'_{2j}) \rightarrow f \times g(E'_{1i}, E'_{2j})$$
$$h(E'_{1i}, E'_{2j}) \rightarrow h(E'_{1i}, E'_{2j}) + 1$$

For accepted moves update g and h of the new state, otherwise update g and h of the original state.

One (protein) chain in solvent

dos and chain dimensions evaluated for uniform temperature.

compact

extended

One chain in solvent, dos and particle numbers evaluated for a temperature difference of $\Delta T_{red} = 0.001$

Two ligands in solvent, dos and particle numbers evaluated for a temperature difference of $\Delta T_{red} = 0.001$

aggregate.

One (protein) chain and one ligand in solvent

dos and chain dimensions evaluated for uniform temperature.

One (protein) chain, one ligand in solvent, dos evaluated with a temperature difference of $\Delta T_{red} = 0.001$

The Soret coefficients of the protein and the ligand are both positive (thermophobic) and very similar for most temperatures.

One (protein) chain, one ligand in solvent, dos evaluated with a temperature difference of $\Delta T_{red} = 0.001$

Discussion

Density-of-states simulation:

- provide access to thermodynamics over a wide temperature range from one simulation
- require simple (coarse-grained) systems
- if performed in a divided box, give an estimate of the chemical contribution to the Soret coefficient. The solvent needs to be treated explicitly.
- Square-well HP model
- Simple, off-lattice with discrete energy level
- Reproduces some characteristics of proteins
- Hydrogen bond interactions can be modeled through orientation dependent interactions.
- More sophisticated SW-type models have been parametrized for proteins and can be simulated with molecular dynamics simulations, which gives access to dynamics.

Thanks!

Mark Taylor Hiram College

Simone Wiegand, FZ Juelich, and her group.