Thermodynamics of Supramolecular Polymers with Hydrogen Bonding Ends

<u>Eunsang Lee*</u> and Wolfgang Paul Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany *Email address: eunsang.lee@physik.uni-halle.de

CompPhys 2018, Leipzig

Supramolecular Polymers

Eunsang Lee

Thermodynamics of Supramolecular Polymers

Ring-Linear Transition

• Ring aggregates

- Energetically favorable (no free associating ends)
- Entropically unfavorable (two ends should meet in space)

Sol-Gel Transition

• Critical functionality $f^*=2$

Rubinstein et al, Curr. Opin. Colloid Interface Sci. 1999

Functionality of Stickers

• Hydrogen bonding stickers

Coarse-Grained Model for SMPs

- United Atom Model for Polyethylene and polybutylene glycols
- Hydrogen bonding stickers (Lee et al, J. Chem. Phys. 2018)

 $U_{\rm hb}(r_{ij},\vec{i}_k,\vec{j}_l) = -\epsilon_{\rm hb}G(r_{ij};R_{\rm hb},\sigma_R) \times G(\vec{i}_k\hat{r}_{ij};1,\sigma_\theta)G(\vec{i}_l\hat{r}_{ij};-1,\sigma_\theta),$

Sampling Methods

• Stochastic Approximation Monte Carlo (SAMC)

- Wang-Landau algorithm (Landau et al, Am. J. Phys. 2004) $w(U_{\text{old}} \rightarrow U_{\text{new}}) = \min\left[\frac{g(U_{\text{old}})}{g(U_{\text{new}})}, 1\right]$
- SAMC (Liang et al, J. Am. Stat. Assoc, 2007)

 $\ln[g(U)] \to \ln[g(U)] + \gamma_t(\delta_{U,U_{\text{new}}} - p^*(U)) \qquad \gamma_t = \gamma_0 \frac{t_0}{\max(t_0, t)}$

• Replica Exchange SAMC (Vogel et al, Phys. Rev. Lett. 2013)

 $w_{\text{ex}}(x_i \leftrightarrow y_j) = \min\left(1, \frac{g_i(U(x))}{g_i(U(y))} \frac{g_j(U(y))}{g_j(U(x))}\right)$

• Density of States for Total Energies (Shakirov et al, Eur. Phys. J. 2016)

$$g(E) = \sum_{U=U_{\min}}^{U_{\max}} g(U)g_{id}(E-U)\Theta(E-U)$$

Heterocomplementary SMPs

• THY-PEG(PBG)-THY and DAT-PEG(PBG)-DAT

Ring-Linear Transition

Flower-like Micelle

Flower-like Micelle

Flower-like Micelle

Ring-Gel Transition

Critical functionality of gelation $f^*=2$

Ring-Gel Transition

Ring-Gel Transition

Phase Diagram

Conclusion

- SMPs with a temperature-dependent functionality sticker show a micelle (or gel)-ring transition.
- At intermediate temperature, SMPs undergo a ring-linear transition.
- At very low temperature, dilute SMPs form flower-like micelles and semidilute SMPs over overlap concentration form a gel.

Thank you for your attention!