Specific heat and partition function zeros for the dimer model on the checkerboard B lattice: Finite-size effects

Nikolay Izmailian,

Yerevan Physics Institute, Armenia

In collaboration with

Chin-Kun Hu, Ming-Chya Wu, Chi-Ning Chen, Ralph Kenna

Izmailian, Hu and Kenna, Phys. Rev. E 91, 062139 (2015) Izmailian, Wu and Hu, Phys. Rev. E94, 052141 (2016) Izmailian, Wu, Chen and Hu, submitted to Phys. Rev. E

CompPhys18

29 November - 01 December 2018, LEIPZIG

Outline

- Dimer model
- **•** Dimer model on finite 2M x 2N checkerboard lattice.
- Specific heat and partition function zeros:Finite size analysis
- Summary

Dimer model

The dimer problem originated from investigation of the thermodynamic properties of a system of diatomic molecules (called dimers) absorbed on the surface of a crystal.

The first papers dealing with the dimer statistics were published by Fowler and Rushbrooke (1937), Chang (1939) and Flory (1942).

A "dimer" is a two-atom molecule. Dimer system is specified by a lattice G consisting of vertices (sites) connected by bonds. Dimer can be placed on the bonds of G so that no vertex has more than one dimer. The "dimer problem" is to determine the number of ways of covering of a given lattice with dimers, so that all sites are occupied and no two dimers overlap. The number of ways of covering a given lattice with dimers is given by partition function $Z_G(x, y)$

$$Z_G(x, y) = \sum_{\text{all d.c.}} x^{n_1} y^{n_2}$$
$$x = e^{-\beta \varepsilon_x}$$
$$y = e^{-\beta \varepsilon_y}$$

Equivalence to other statistical models

Ising model Fisher (1966)

Dimer model on 4 x 8 lattice (bathroom-tile lattice)

6 - Vertex model Wu (1968)

- **Biomembranes** Nagle (1973)
- Polymer Nagle (1974)

Dimer model

on honeycomb lattice

Spanning tree Temperley (1974) Dimer model
 Sandpile model Majumdar and Dhar (1992) on square lattice

Checkerboard lattice

The checkerboard lattice is a simple rectangular lattice with alternated anisotropic dimer weights in horizontal (x_1, x_2) , and vertical (y_1, y_2) directions.

There are three possible classifications of the dimer weights on the bonds of the lattice and they denoted as checkerboard A, B, and C lattices.

Dimer model on the checkerboard lattices A, B, and C has different critical behaviour.

Exact solution of the dimer model on checkerboard lattice

(N.I., C.-K. Hu, R. Kenna, Phys. Rev. 91 (2015) 2139)

Partition function for dimer model on checkerboard lattices under periodic b.c.

$$Z = \frac{1}{2} \left(-Z_{0,0}^{2} + Z_{0,\frac{1}{2}}^{2} + Z_{\frac{1}{2},0}^{2} + Z_{\frac{1}{2},\frac{1}{2}}^{2} \right)$$
A: $Z_{\alpha,\beta}^{2} = \prod_{n=0}^{N-1} \prod_{m=0}^{M-1} \left(|x_{1}e^{i\varphi_{\alpha,n}} - x_{2}e^{-i\varphi_{\alpha,n}}|^{2} + |y_{1}e^{i\theta_{\beta,m}} - y_{2}e^{-i\theta_{\beta,m}}|^{2} \right)$
B: $Z_{\alpha,\beta}^{2} = \prod_{n=0}^{N-1} \prod_{m=0}^{M-1} \left| |x_{1}e^{i\varphi_{\alpha,n}} - x_{2}e^{-i\varphi_{\alpha,n}}|^{2} - (y_{1}e^{i\theta_{\beta,m}} - y_{2}e^{-i\theta_{\beta,m}})^{2} \right|$
C: $Z_{\alpha,\beta}^{2} = \prod_{n=0}^{N-1} \prod_{m=0}^{M-1} \left| (x_{1}e^{i\varphi_{\alpha,n}} - x_{2}e^{-i\varphi_{\alpha,n}})^{2} + (y_{1}e^{i\theta_{\beta,m}} - y_{2}e^{-i\theta_{\beta,m}})^{2} \right|$
 $\varphi_{\alpha,n} = \frac{\pi(n+\alpha)}{N}, \theta_{\beta,m} = \frac{\pi(m+\beta)}{M}$
Square lattice: $Z_{\alpha,\beta}^{2} = \prod_{n=0}^{N-1} \prod_{m=0}^{M-1} \left(x^{2} |e^{i\varphi_{\alpha,n}} - e^{-i\varphi_{\alpha,n}}|^{2} + y^{2} |e^{i\theta_{\beta,m}} - e^{-i\theta_{\beta,m}}| \right)$

^y² ⁻ ^y P.W. Kasteleyn, Physica 27 (1961) 27; M.E. Fisher Phys. Rev. 124 (1961), 1664

Checkerboard B lattice

Partition function for dimer model on checkerboard B lattice under periodic b.c.

$$Z_{2M,2N} = \frac{1}{2} \left(-Z_{0,0}^{2} + Z_{0,\frac{1}{2}}^{2} + Z_{\frac{1}{2},0}^{2} + Z_{\frac{1}{2},\frac{1}{2}}^{2} \right)$$

$$Z_{\alpha,\beta}{}^{2} = \prod_{n=0}^{N-1} \prod_{m=0}^{M-1} \left| \left| x_{1} e^{i \varphi_{\alpha,n}} - x_{2} e^{-i \varphi_{\alpha,n}} \right|^{2} - \left(y_{1} e^{i \theta_{\beta,m}} - y_{2} e^{-i \theta_{\beta,m}} \right)^{2} \right|$$

$$\varphi_{\alpha,n} = \frac{\pi(n+\alpha)}{N}$$
, $\theta_{\beta,m} = \frac{\pi(m+\beta)}{M}$

Square lattice limit: $x_1 = x_2 = x$, $y_1 = y_2 = y$.

Generalized K model limit: $x_1 = x_2 = x$, $y_1 = 1$, $y_2 = y$.

Honeycomb lattice limit: x_1 , x_2 , $y_1 = y$, $y_2 = 0$.

Dimer model on square lattice

- (a) The specific heat on the 2N x 2N square lattice as a function of *t*. Here $t^2 = (x_1 - x_2)^2 / 4x_1 x_2$ and $y_1 = y_2$.
- (b) The partition function zeros for the lattice of 2N = 32.

Generalized K model $(x_1 = x_2 = x; y_1 = 1; y_2 = y)$

Nagle, J. Chem. Phys. 58, 252 (1973); Bhattacharjee, Nagle, Phys. Rev. A, 3199 (1985)

Partition function for generalized K model

$$Z_{2M,2N} = \frac{1}{2} \left(-Z_{0,0}^{2} + Z_{0,\frac{1}{2}}^{2} + Z_{\frac{1}{2},0}^{2} + Z_{\frac{1}{2},\frac{1}{2}}^{2} \right)$$

$$Z_{\alpha,\beta}{}^{2} = \prod_{n=0}^{N-1} \prod_{m=0}^{M-1} \left| 4x^{2} \sin^{2} \varphi_{\alpha,n} - \left(e^{i \theta_{\beta,m}} - y e^{-i \theta_{\beta,m}} \right)^{2} \right|$$

$$\varphi_{\alpha,n} = \frac{\pi(n+\alpha)}{N},$$
$$\theta_{\beta,m} = \frac{\pi(m+\beta)}{M}$$

Phase diagram

Region I separated from the region II by critical line y = 1 - 2 x.

Region **III** separated from the region **II** by critical line y = 1 + 2x

FIG. 6: (Color online) The phase diagram of the generalized K-model.

In region I, the system frozen in the ground state, where the dimers are on the edges of activity 1.

Region **III** is also a frozen ground state, where the dimers are on the edges of activity **y**.

Region **II** is the disorder phase.

Specific heat and partition function zeros for x = 1/4. The critical points at $y_c = 1/2$ and $y_c = 3/2$

(a) The specific heat as a function of y for the generalized K-model in with x = 1/4. Here $y_{c1} = 1/2$ and $y_{c2} = 3/2$.

(b) (b) The partition function zeros for the lattice of 2M = 2N = 48.

Specific heat and partition function zeros for y = 1/2. The critical points at $x_c = 1/4$

(a) The specific heat as a function of x for the generalized K-model with y = 1/2. Here $x_c = 1/4$.

(b) The partition function zeros for the lattice of 2M = 2N = 48.

Kasteleyn K₂ – model $(y_1 = 0; y_2 = y)$

Honeycomb lattice I

Honeycomb lattice II

Honeycomb I model $(x_1 = x_2 = x, y_1 = y, y_2 = 0)$

The critical line y=2x separated the frozen region I from disordered region II.

FIG. 9: (Color online) The phase diagram of the honeycomb lattice K_2 -model with $x_1 = x_2 = x, y_1 = y, y_2 = 0$

Honeycomb I model y = 1 and fixed M = 16

- (a) The specific heat of the honeycomb lattice I and y = 1, as a function of x. Here $x_c = 1/2$
- (b) The partition function zeros for the lattice of $2M \times 2N = 32 \times 128$.
- (c) The zoom-in of (b).

Honeycomb I model y = 1 and fixed 2N = 32

- (a) The specific heat of the honeycomb lattice I and y = 1, as a function of x. Here $x_c = 1/2$
- (b) The partition function zeros for the lattice of $2M \times 2N = 128 \times 32$.
- (c) The zoom-in of (b)

Honeycomb I model

y = 1 and different shape factor $\xi = M^2/N$

The specific heat for the honeycomb lattice I and y = 1, as a function of x for the different shape factor ξ

- (a) $\xi = 1/4$,
- (b) $\xi = 4$,
- (c) $\xi = 64$.

Here $x_c = 1/2$

Honeycomb I model x = 1 and shape factor $\xi = M^2/N = 1$

The specific heat for the honeycomb I model for x = 1 and $\xi = 1$, as a function of y. Here $y_c = 2$

Honeycomb II model $(x_1 = 1, x_2 = x, y_1 = y, y_2 = 0)$

In regions I, II and III the system frozen in the ground state, where the dimers are on the edges of activity 1, x, and y respectively. Region IV is the disorder phase.

The region I separated from the region IV by critical line y=1+x, the region II separated from the region IV by critical line y=x-1, the region III separated from the region IV by critical line y=1-x.

Honeycomb II model at x = 1/2: The specific heat and partition function zeros

- (a) The specific heat of the honeycomb II model at x = 1/2 as a function of y. Here $y_{c1} = 1/2$ and $y_{c2} = 3/2$
- (b) The partition function zeros for the lattice of $2M \ge 32 \ge 512$.
- (c) The zoom-in of (b)

Honeycomb II model at x = 1: The specific heat and partition function zeros

- (a) The specific heat of the honeycomb II model at x = 1 as a function of y. Here $y_{c1} = 0$ and $y_{c2} = 2$
- (b) The partition function zeros for the lattice of $2M \ge 32 \ge 512$
- (c) The zoom-in of (b).

Honeycomb II model at y = 1 and $\xi = 1$: The specific heat and partition function zeros

- (a) The specific heat for honeycomb II model at y = 1 with $\xi = 1$ as a function of x. Here $x_c = 2$
- (b) The partition function zeros for the lattice of $2M \times 2N = 32 \times 512$.
- (c) The zoom-in of (b)

Thank You!