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1. Quantum dynamics of open systems

* nature is fundamentally quantum-mechanical

= classical behaviour is a limit behaviour, when formally &z — 0
* any observable system is open, i.e. coupled to an 'environment’

= closed systems are idealisations for very weak coupling

it is crucial to understand behaviour of open quantum systems

L = 2 &
=

CALDEIRA & LEGGETT 1981, 83

system coupling environment

= study 'system’ & 'coupling’ & 'environment’

are there effective descriptions of the 'system’

relative importance of thermal and quantum fluctuations
* required for studies of “quantum ageing” L(t) ~ tV/?
quantum fluctuation-dissipation theorem broken through quantum-quenched dynamics

deep quench to T = 0: dynamical exponent z = 2 (classical) — z =1 (quantum) ‘




For classical open systems: many equivalent descriptions available
common aspect: not to treat the whole environment, but deduce
some parameters which describe its effetcs, e.g. temperature T

. master equation P({c}; t) = proba to have configuration o at time t
P({c};t Z w(r = o)P({1}; t) — w(oc — 7)P({c}; t)]
{r}

built-in markov property (no explicit memory-dependence)

averages (X)(t) = >, X({a})P({c}: 1)

. Langevin equation here: overdamped limit

Oex(t) = F(x(t)) + n(t)

random force 7)(t) from interaction of system with many particles of bath

hence 7(t) [PLeRLET gaussian random variable (central limit-theorem)

want to find average (x(t))



Are these descriptions immediately applicable to quantum systems

Example: CARMICHAEL 99
with ‘position’ variable x also need conjugate momentum p
write pair of Langevin equations, including friction (A > 0) and noise 7

1
Oex=—p , Op= —mw’x — Ap+1 *)
where x, p are operators. Let ([x(t),n(t)]) = 0.

What about the commutator ¢(t) = [x(t), p(t)] ? Derive eq. of motion

= canonical commutator decays rapidly | (c(t))= ihe

similarly: many-body systems with the above (classical) Langevin equation (*)
relax to (and not to the quantum) eg WALD & v 16



concentrate on Quantum Langevin Equation

here: case of ohmic dissipation, A > 0 system  coupling  environment

2 , Forp, KAc, MAZUR 1965 ]
6tX + /\ﬁtx + V (X) = C Forp & Kac 1987
Forp, LEwis, O’CONNELL 1988
e F =

use environment of free harmonic oscillators (explicitly solvable)
average over initial states of these oscillators
obtain (stationary) noise correlator Ky =1

% <{C(t)7C(0)}> = i/ooodu hv coth <§_,V_> cos(vt)

* for environment of free oscillators, this is indeed gaussian

* since ({¢(t),¢(0)}) o &(t), this is not markovian !

* white noise (((t)¢(0)) = 2AT4(t) recovered as classical limit A — 0



2. Axiomatic construction of quantum Langevin equations |

are there ‘true quantum analogues’ of classial Langevin equations
how to be sure that a given description is ‘really quantum’ and not semi-classical
physical criteria for the identification of ‘correct’ quantum Langevin equations

case study 1: analyse the Bedeaux-Mazur equations,

for a single harmonic oscillator: spin s, momentum p WY
BEDEAUX & MAZUR 01,02

1
Oes=—p+ns , Oep= —mw?®s — Ap + np

restrict to ohmic friction (A > 0) and admit two noises 7s, 1, with

<77p(t)77p(t’)> = Amhw coth (E_) 5(t —t))
<775(t)77p(t/)> = — <77p(t)775(t’)> — %ih)\ 5(t—t)
(ns(t)ns(t')) = 0

N.B. B & M obtained this from a tedious analysis of the Green functions; is markovian



. attempt to absorb all relevant information, on the
environment and on the coupling to it, into noise correlators

Minimal criteria for a physically sensible quantum dynamics: AW 18
(A) canonical equal-time commutators ([s,(t), pm(t)])= 1Adn,m
(B) Kubo formula from linear-response theory
(C) Virial theorem from equilibrium statistical mechanics
(D) Quantum fluctuation-dissipation theorem (QFDT)

conditions (A,B) fix noise commutators, conditions (C,D) fix noise anti-commutators

analysis begins with formal solutions of eqs of motion Ay =3 /% —w?

s(r):sA()“ws O
. /dT e M=) V”: A ns r)] y—— /dre V”:) + Ayl )}
p(t) = 7m/\+s+(0)e/\+t — mA_s_ (0)

where s1(0) characterise the initial conditions



Outline of main results:
(A): admit ([ns(t),np(t")]) = xd(t — t')

ﬂX initial Condition <[S+(O)7S*(O)]> = (A+_Af)/(,7\++/\7) lex parsimoniae OCKHAM
only stationary part remains: ([s(t), p(t)]) = § = ih =

(B): perturbation H — H — hs, gives perturbed egs of motion

1
8ts:gp+ns ) 8tp:—mw25—)\p+h+77p

define

d(s(t)) o(—-t) 1 A (bt AL (bt
(s) A _ A_(t—t')  —NAi(t—t)
R = Shey |, m A — A (e € )

define two-time correlators | CYV(t, t/) := 1 (A(£)A(t)) + A(t)A(t))

can check explicitly the

REP)(t — ') = %@(t —t) C&S’p)(t, t')

analogous: perturb H +— H + kp, find RP)(t — t') = ‘55(&(:,);

_ 2 2p(s) /
= R¥(t —t
o mw ( )




(C): admit ({np(t), mp(t')}) = a8t — ), ({ns(e)ms(e)}) = Bo(e— ) |G
fix a;, 8 from Virial theorem:
mean kinetic energy (Ecin) = (Epot) mean potential energy

= (p?) = C( t,t) = m MZC(S)(t t) = m?w?(s?)
for 8 # 0, leads to condition A3 - AN? =

obtain « from explicit quantum statistical mechanics

(s) o i
C+’St(t t)= 220m2w?  2mw

coth — = <s > a = hAmw coth %

= | conditions (A,B,C) reproduce the Bedeaux-Mazur equations AWH 18
(D): observe empirically the stationary fluctuation-dissipation relations

- CJ(rs,)st(T) —hw coth <§T> R(S)(T) , Or CJ(:lt(T) —hw coth (;T) R(p)(r)

*if h — 0, reproduce classical FDT, but no QFDT if A > 0 ——
= | |




3. Axiomatic construction of quantum Langevin equations Il

case study 2: reconsider the quantum harmonic oscillator, spin s & momentum p
1 2
8ts = ;p + Ns atp = —MmMw"Ss — )\p + Tp ARAUJO, WALD, MH 18

fix the noise correlators such that all four conditions (A,B,C,D) are satisfied

Environment much larger than the system, hence unaffected by system’s
behaviour = environment is at equilibrium

=

= simplify analysis by Fourier—transforming into frequency-space

dt e—ll/t

Jﬁ

and we have the formal (stationary) solutions

p(v)/m + (i + MN)is(v)

oy wip(v) — mw?7s(v)
w2 +i\v — 12 » Plv) =

w2 +i\v — 12

s(v) =




recall the basic idea:

. attempt to absorb all relevant information, on the
environment and on the coupling to it, into noise correlators

Minimal criteria for a physically sensible quantum dynamics: Awn 18
(A) canonical equal-time commutators ([sy(t), pm(t)])= 1A0n m
(B) Kubo formula from linear-response theory
(C) Virial theorem from equilibrium statistical mechanics
(D) Quantum fluctuation-dissipation theorem (QFDT)

conditions (A,B) fix noise commutators, conditions (C,D) fix noise anti-commutators



Outline of main results:
(B): from perturbed H, find linear responses of momentum and of spin

(same as for classical case, because of linear egs. of motion)

RP) (1) = m*w?RE (1) = —(27) Y2 muw? (V2 — i\ — w2)71
necessary condition for validity of Kubo formulae
) = mw?cB(v) (#)

N.B. in frequency-space 3 ([s(v),5(v)]) = 6(v + V)CP(v) ete.

. N e o ang (8 s(E0]) = (e — 1)
admit (Las{8), (1) = (e = € and g ) () = it~ 1)

(#) leads to the following condition
x(v) + m2w4$(1/) + imw’v (R(v) + R(—v))
LR + m? (ﬁ + V2) D(v) + mu? (iu (R(v) + R(—v)) + X (R(v) — E(fu)))

= most simple solution (the only one independent of the model parameters w, m):

R()—R(-v) =0 E




(A): admit ([ns(t), np(t")]) = ihr(t — t') other commutators vanish
expect ([s(t), p(t')]) = ihK(t — t') with K(0) = 1 and find
E R(y) _ ( ve—ilw+w A(v)

V2 — il — w?)(v? + i — w?)

if 5(v) = ko, then K(0) = V27 koA ~? = V2T kg = A
this gives the non-vanishing noise commutators N.B.: R(v) must be symmetric

([ns(t),mp(t)]) =ihX(t — t') . ([7s(v). Dp(v)]) = (v + )ik

(B’): from perturbed H, linear responses of momentum and of spin are known

//‘_\\)(p)(l/) = m2w2§(s)(u) = —(21) Y2 mu? (V2 — i\ — wz)_l (R)
and also check the (here in frequency-space)
~ 2 1 -
REP ()= 2~ C(s’p) v
() = 7= C0)

N.B.: general solution depends on two anti-symmetric functions (t), x(t),

which contain specific model-parameters m, w



(C): admit ({np(t),np(t')}) = 2ot — t'), ({ms(t),ms(t')}) = 26(t — 1)
and ({ns(t), np(t')}) = 27(t — ')
with the notation: C(v,1) = 1 ({8(v),5(/)}) = 6(v + ') C () etc.

the gives the condition /C\J(rp)( ) =m wzC( )( ) . Hence

v2a(v)+m w46( )—w a(v )+m2w2(x\2+u2)6( ) + Amw? (F(v) +75(—

The most simple solution is
a(w) = Bv) =0 , A(v) +3(—v) =0 E

It is the only solution independent of the model's parameters m, w.
= 7(v) is anti-symmetric | In that case

2i vy (v) 1
m (12 —idv —w?) (12 + il —w?)  miw?

o) = cPw) ()

N.B.: general solution depends on two symmetric functions a(t), 5(t),

which contain specific model-parameters m, w

v))



(D): find the anti-symmetric function 7(v) from the QFDT.
In frequency-space, this requires (! independence of observable s, p )

Py oy 1w
Oy ey Vom et

Compare the correlator (C) with the response (R) via the Kubo formulz:

2iv21 3(v)

hv
= h\coth —
co T

Consequence: the non-vanishing moments are in frequency-space

12

({0130} ) = = cot

hv
2T

i

) S(v+ 1), <{ﬁ5(1/)7ﬁp(1/')}> — i\ S(v + V)

and directly for the times

<{n5(t),np(t’)}> - ATcoth( hT(t— t )> , <[n5(t),np(t')}> —imNS(t — t)




Illustration: Spin—spin correlator C_(,’_s)(t) = C_(’_S)(t, t) several values of w

200 4
s 7~
@, 150 " m=1,
QO A=1h=1
100 e 70
left: 7 —1
50
A right: T =0
0 50 100 150 0 50 100t 150 200
t

if w > 0: noisy oscillator, classical and quantum behaviour qualitatively similar
for T > 0 saturation of Cf)(t) at semi-classical value
if w = 0: freely diffusing brownian particle, Cj_s)(t) = (x*(t)) variance
t T >0 classical diffusion  Brow~ 1827

(5) _ 2 t—o00 EINSTEIN 1905
() = (3(1)) % e
Int T =0 quantum diffusion Al

AMBEGAOKAR 1985

N.B.: quantum diffusion mixes system more slowly than classical diffusion



4. Summary & Discussion

* a single quantum particle, with hamiltonian H

* write (a pair of) quantum Langevin equation(s) ohmic dissipation

8ts—%[H s| +ms 8tp—f[H p] — Ap+1p

St

for the operators of (spin) s and conjugate p
and with dissipation rate A > 0

* the noise operators 17,7, have the non-vanishing second moments

({nettrmen}) =ameomn (Sl =) ([eto)mp(e)]) = innae - o)

= describes the relaxation towards a quantum equilibrium state

and reproduces classical dynamics in the i — 0 limit



* physical content behind quantum Langevin equation was made explicit
(canon. commutator, Kubo formule, virial theorem, quantum FDT)

* non-markovianity appears explicitly in <{ns(t),77p(t’)}>
* no time-delay in dissipation required,
ohmic resistance enough to yield non-markovianity
see PASQUALE, RUGGIERO, ZANNETTI 1984
= quantum FDT and Markov property mutually exclusive
* mathematical equivalence to the Ford-Kac-Mazur (FKM)
quantum Langevin equation
* noise correlators independent of model parameters = generic result
* noise correlators contain less derivatives than in FKM
= useful for numerical studies ?
* formulate treatable models with clear, and physically motivated, ingredients
— e.g. quantum spherical models —
* explicit treatment of such systems might help to appreciate better the
applicability of more complex procedures (such as Lindblad equations)






A last formal observation

should recover in the h—0

* does require care, since singular contributions arise

(usual ‘Fourier integral representations’ of the noise correlators very strongly divergent !)
* must separate noise correlators into

(i) ‘regular’ and (ii) ‘singular’ (distributions !) parts

leads to

wT
exp (=5 |t .
<{7]S(t),7)p(0)}> = AT S”]E](T:}L)l) + sgnt , <[’r]5(t),np(0)}> =1k (1)
\—/h—/ singular
regular

N.B. important if derivatives of these correlators are needed AWH 18




