Axiomatic construction of quantum Langevin equations

Malte Henkel

Laboratoire de Physique et Chimie Théoriques (CNRS UMR 7019), Université de Lorraine Nancy, France

Centro de Física Téorica e Computacional, Universidade de Lisboa, Portugal

CompPhys18, Universität Leipzig, 29. November 2018

Remerciements:

Sascha Wald

SISSA TRIESTE (ITALIA)

Rúbia Araújo

LPCT & Univ. Recife (Brazil)

Gabriel T. Landi

USP SÃO PAULO (BRAZIL)

Overview:

- 1. Quantum dynamics of open systems
- 2. Axiomatic construction of a quantum Langevin equation I
- 3. Axiomatic construction of a quantum Langevin equation II
- 4. Summary & Discussion

- [1] S. Wald, MH, J. Stat. Mech. P07006 (2015) [arxiv:1503.06713]
- [2] S. Wald, MH, J. Phys. A49, 125001 (2016) IOPSELECT [arxiv:1511.03347]
- [3] S. Wald, G.T. Landi, MH, J. Stat. Mech. 013103 (2018) [arxiv:1707.06273]
- [4] S. Wald, MH, Int. Transforms Spec. Funct. 29, 95 (2018) [arxiv:1707.06275]
- [5] R. Araújo, S. Wald, MH, [arxiv:1809.08975] ...

1. Quantum dynamics of open systems

- * nature is fundamentally quantum-mechanical
 - \Rightarrow classical behaviour is a limit behaviour, when formally $\hbar \to 0$
- * any observable system is **open**, i.e. coupled to an 'environment'
 - \Rightarrow closed systems are idealisations for very weak coupling
- ⇒ it is crucial to understand behaviour of open quantum systems

 $L(t) \sim t^{1/z}$

Caldeira & Leggett 1981, 83

- ? are there effective descriptions of the 'system' ?
- ? relative importance of thermal and quantum fluctuations ?
- * required for studies of "quantum ageing"

quantum fluctuation-dissipation theorem broken through quantum-quenched dynamics

deep quench to T=0: dynamical exponent z=2 (classical) $\rightarrow z=1$ (quantum)

For **classical open systems**: many equivalent descriptions available common aspect: not to treat the whole environment, but deduce some parameters which describe its effects, e.g. temperature *T*

1. **master equation** $P(\{\sigma\};t) = \text{proba to have configuration } \sigma \text{ at time } t$

$$\partial_t P(\{\sigma\};t) = \sum_{\{\tau\}} [w(\tau \to \sigma)P(\{\tau\};t) - w(\sigma \to \tau)P(\{\sigma\};t)]$$

built-in markov property (no explicit memory-dependence) averages $\langle X \rangle(t) = \sum_{\{\sigma\}} X(\{\sigma\}) P(\{\sigma\};t)$

2. Langevin equation here: overdamped limit

$$\partial_t x(t) = \mathscr{F}(x(t)) + \eta(t)$$

random force $\eta(t)$ from interaction of system with many particles of bath hence $\eta(t)$ white noise gaussian random variable (central limit-theorem) want to find average $\langle x(t) \rangle$

? Are these descriptions immediately applicable to quantum systems ?

Example: quantum-mechanical harmonic oscillator with 'position' variable x also need conjugate momentum p write pair of Langevin equations, including friction ($\lambda > 0$) and noise η

$$\partial_t x = \frac{1}{m} p$$
 , $\partial_t p = -m\omega^2 x - \lambda p + \eta$ (*)

where x, p are operators. Let $\langle [x(t), \eta(t)] \rangle = 0$.

What about the **commutator** c(t) = [x(t), p(t)] ? Derive eq. of motion

$$\partial_t \langle c(t) \rangle = -\lambda \langle c(t) \rangle$$
, $c(0) = i\hbar$

$$\Rightarrow$$
 canonical commutator decays rapidly $\langle c(t)
angle = \mathrm{i}\hbar\,e^{-\lambda t}$

similarly: many-body systems with the above (classical) Langevin equation (*) relax to classical (and **not** to the quantum) ground state

• e.g. Wald & MH 16

concentrate on Quantum Langevin Equation

system coupling

here: case of ohmic dissipation, $\lambda > 0$

$$\partial_t^2 x + \lambda \partial_t x + V'(x) = \zeta$$

FORD, KAC, MAZUR 1965 FORD & KAC 1987 FORD, LEWIS, O'CONNELL 1988

environment

 $k_{\rm B} = 1$

average over initial states of these oscillators obtain (stationary) noise correlator

$$\frac{1}{2} \left\langle \left\{ \zeta(t), \zeta(0) \right\} \right\rangle = \frac{\lambda}{\pi} \int_0^\infty \mathrm{d}\nu \, \hbar\nu \, \mathrm{coth} \left(\frac{\hbar\nu}{2T} \right) \cos(\nu \, t)$$

* for environment of free oscillators, this is indeed gaussian

use environment of free harmonic oscillators (explicitly solvable)

- * since $\langle \{\zeta(t), \zeta(0)\} \rangle \not\sim \delta(t)$, this is **not markovian**!
- * white noise $\langle \zeta(t)\zeta(0)\rangle = 2\lambda T\delta(t)$ recovered as classical limit $\hbar \to 0$

2. Axiomatic construction of quantum Langevin equations I

- ? are there 'true quantum analogues' of classial Langevin equations?
- ? how to be sure that a given description is 'really quantum' and not semi-classical ?? physical criteria for the identification of 'correct' quantum Langevin equations ?

case study 1: analyse the Bedeaux-Mazur equations, for a single harmonic oscillator: spin s, momentum p

Bedeaux & Mazur 01,02

$$\partial_t s = \frac{1}{m} p + \eta_s$$
, $\partial_t p = -m\omega^2 s - \lambda p + \eta_p$

restrict to ohmic friction ($\lambda>0$) and admit two noises η_s,η_p , with

$$\langle \eta_{p}(t)\eta_{p}(t')\rangle = \lambda m\hbar\omega \coth\left(\frac{\hbar\omega}{2T}\right) \delta(t-t')$$

$$\langle \eta_{s}(t)\eta_{p}(t')\rangle = -\langle \eta_{p}(t)\eta_{s}(t')\rangle = \frac{1}{2} i\hbar\lambda \delta(t-t')$$

$$\langle \eta_{s}(t)\eta_{s}(t')\rangle = 0$$

N.B. $B \ \& \ M$ obtained this from a tedious analysis of the Green functions; is markovian

Langevin approach: attempt to absorb all relevant information, on the environment and on the coupling to it, into noise correlators

Minimal criteria for a physically sensible quantum dynamics:

AWH 18

 $\Lambda_{\pm} = \frac{\lambda}{2} \pm \sqrt{\frac{\lambda^2}{4} - \omega^2}$

(A) canonical equal-time commutators $\langle [s_n(t), p_m(t)] \rangle = i\hbar \delta_{n,m}$ (B) Kubo formula from linear-response theory

(C) Virial theorem from equilibrium statistical mechanics (D) Quantum fluctuation-dissipation theorem (QFDT)

analysis begins with formal solutions of eqs of motion

conditions (A,B) fix noise commutators, conditions (C,D) fix noise anti-commutators

conditions (A,B) fix noise commutators, conditions (C,D) fix noise anti-commutators

$$\begin{split} s(t) &= s_+(0)e^{\Lambda_+t} + s_-(0)e^{\Lambda_-t} \\ &- \frac{1}{\Lambda_+ - \Lambda_-} \int_0^t \mathrm{d}\tau \ e^{-\Lambda_+(t-\tau)} \left[\frac{\eta_p(\tau)}{m} + \Lambda_- \eta_s(\tau) \right] + \frac{1}{\Lambda_+ - \Lambda_-} \int_0^t \mathrm{d}\tau \ e^{-\Lambda_-(t-\tau)} \left[\frac{\eta_p(\tau)}{m} + \Lambda_+ \eta_s(\tau) \right] \\ p(t) &= -m\Lambda_+ s_+(0)e^{\Lambda_+t} - m\Lambda_- s_-(0)e^{\Lambda_-t} \\ &+ \frac{m\Lambda_+}{\Lambda_+ - \Lambda_-} \int_0^t \mathrm{d}\tau \ e^{-\Lambda_+(t-\tau)} \left[\frac{\eta_p(\tau)}{m} + \Lambda_- \eta_s(\tau) \right] - \frac{m\Lambda_-}{\Lambda_+ - \Lambda_-} \int_0^t \mathrm{d}\tau \ e^{-\Lambda_-(t-\tau)} \left[\frac{\eta_p(\tau)}{m} + \Lambda_+ \eta_s(\tau) \right] \end{split}$$

where $s_{\pm}(0)$ characterise the initial conditions

Outline of main results:

(A): admit $\langle [\eta_s(t), \eta_p(t')] \rangle = \kappa \, \delta(t - t')$ fix initial condition $\langle [s_+(0), s_-(0)] \rangle = \frac{\kappa/m}{(\Lambda_+ - \Lambda_-)(\Lambda_+ + \Lambda_-)}$

only stationary part remains: $\langle [s(t),p(t)]\rangle = \frac{\kappa}{\lambda} \stackrel{!}{=} \mathrm{i}\hbar$

 $\Rightarrow \kappa = i\lambda\hbar$

(B): perturbation $H \mapsto H - hs$, gives perturbed eqs of motion

$$\partial_t s = \frac{1}{m} p + \eta_s$$
, $\partial_t p = -m\omega^2 s - \lambda p + h + \eta_p$

define linear response function

$$R^{(s)}(t,t') := \left. \frac{\delta \langle s(t) \rangle}{\delta h(t')} \right|_{h=0} = \frac{\Theta(t-t')}{m} \frac{1}{\Lambda_+ - \Lambda_-} \left(e^{-\Lambda_-(t-t')} - e^{-\Lambda_+(t-t')} \right)$$

define two-time correlators $C_{\pm}^{(A)}(t,t'):=rac{1}{2}\left\langle A(t)A(t')\pm A(t')A(t)
ight
angle$

can check explicitly the Kubo formula

$$R^{(s,p)}(t-t') = \frac{2i}{\hbar}\Theta(t-t') C_{-}^{(s,p)}(t,t')$$

analogous: perturb $H\mapsto H+kp$, find $R^{(p)}(t-t')=\left.\frac{\delta\langle p(t)\rangle}{\delta k(t')}\right|_{k=0}=m^2\omega^2R^{(s)}(t-t')$

 $\Rightarrow \boxed{\langle p^2 \rangle = C_+^{(p)}(t,t) \stackrel{!}{=} m^2 \omega^2 C_+^{(s)}(t,t) = m^2 \omega^2 \langle s^2 \rangle}$

(C): admit $\langle \{\eta_p(t), \eta_p(t')\} \rangle = \alpha \, \delta(t-t'), \, \langle \{\eta_s(t), \eta_s(t')\} \rangle = \beta \, \delta(t-t')$

mean kinetic energy $\langle E_{\rm cin} \rangle = \langle E_{\rm pot} \rangle$ mean potential energy

for
$$\beta \neq 0$$
, leads to condition $\lambda^3 \stackrel{!}{=} 4\lambda\omega^2 \Rightarrow \beta = 0$
obtain α from explicit quantum statistical mechanics

fix α , β from **Virial theorem**:

 $\alpha + \hbar - \hbar \omega$

$$C_{+,\text{st}}^{(s)}(t,t) = \frac{\alpha}{2\lambda m^2 \omega^2} \stackrel{!}{=} \frac{\hbar}{2m\omega} \coth \frac{\hbar\omega}{2T} = \left\langle s^2 \right\rangle_{\text{eq}} \Rightarrow \boxed{\alpha = \hbar\lambda m\omega \coth \frac{\hbar\omega}{2T}}$$

$$\Rightarrow \text{ conditions (A,B,C) reproduce the Bedeaux-Mazur equations}$$

(D): observe empirically the stationary fluctuation-dissipation relations

$$\partial_{ au} \mathcal{C}_{+, ext{st}}^{(s)}(au) = -\hbar\omega \coth\left(rac{\hbar\omega}{2T}
ight) \mathcal{R}^{(s)}(au) \;\;,\;\; \partial_{ au} \mathcal{C}_{+, ext{st}}^{(
ho)}(au) = -\hbar\omega \coth\left(rac{\hbar\omega}{2T}
ight) \mathcal{R}^{(
ho)}(au)$$

* if $\hbar \to 0$, reproduce classical FDT, but **no** QFDT if $\hbar > 0$ \Rightarrow Bedeaux-Mazur equations describe a semi-classical dynamics

3. Axiomatic construction of quantum Langevin equations II

case study 2: reconsider the quantum harmonic oscillator, spin s & momentum p

$$\partial_t s = \frac{1}{m} p + \eta_s$$
, $\partial_t p = -m\omega^2 s - \lambda p + \eta_p$

Araújo, Wald, mh 18

fix the noise correlators such that all four conditions (A,B,C,D) are satisfied

Environment much larger than the system, hence unaffected by system's behaviour \Rightarrow environment is at equilibrium

- ⇒ all noise-correlators are stationary
- ⇒ simplify analysis by Fourier-transforming into frequency-space

$$(\mathscr{F}s(t))(
u) = \widehat{s}(
u) := rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathrm{d}t \; e^{-\mathrm{i}
u t} s(t)$$

and we have the formal (stationary) solutions

$$\widehat{s}(\nu) = \frac{\widehat{\eta}_p(\nu)/m + (\mathrm{i}\nu + \lambda)\widehat{\eta}_s(\nu)}{\omega^2 + \mathrm{i}\lambda\nu - \nu^2} \ , \ \ \widehat{p}(\nu) = \frac{\mathrm{i}\nu\widehat{\eta}_p(\nu) - m\omega^2\widehat{\eta}_s(\nu)}{\omega^2 + \mathrm{i}\lambda\nu - \nu^2}$$

recall the basic idea:

Langevin approach: attempt to absorb all relevant information, on the environment and on the coupling to it, into noise correlators

<u>Minimal criteria</u> for a physically sensible quantum dynamics:

(A) canonical equal-time commutators $\langle [s_n(t), p_m(t)] \rangle = i\hbar \delta_{n,m}$

(B) Kubo formula from linear-response theory

(C) Virial theorem from equilibrium statistical mechanics

(D) Quantum fluctuation-dissipation theorem (QFDT)

conditions (A,B) fix noise commutators, conditions (C,D) fix noise anti-commutators

Outline of main results:

(B): from perturbed H, find linear responses of momentum and of spin (same as for classical case, because of linear eqs. of motion)

$$\widehat{R}^{(p)}(\nu) = m^2 \omega^2 \widehat{R}^{(s)}(\nu) = -(2\pi)^{-1/2} m \omega^2 (\nu^2 - i\lambda\nu - \omega^2)^{-1}$$

necessary condition for validity of Kubo formulæ

$$\widehat{C}_{-}^{(p)}(\nu) = m^2 \omega^2 \widehat{C}_{-}^{(s)}(\nu) \tag{\#}$$

N.B. in frequency-space $\frac{1}{2}\langle [\widehat{s}(\nu),\widehat{s}(\nu')]\rangle = \delta(\nu+\nu')\widehat{C}_{-}^{(s)}(\nu)$ etc.

(#) leads to the following condition

$$\nu^{2}\widehat{\chi}(\nu) + m^{2}\omega^{4}\widehat{\psi}(\nu) + im\omega^{2}\nu\left(\widehat{\kappa}(\nu) + \widehat{\kappa}(-\nu)\right)$$

$$\stackrel{!}{=} \omega^{2}\widehat{\chi}(\nu) + m^{2}\omega^{2}\left(\lambda^{2} + \nu^{2}\right)\widehat{\psi}(\nu) + m\omega^{2}\left(i\nu\left(\widehat{\kappa}(\nu) + \widehat{\kappa}(-\nu)\right) + \lambda\left(\widehat{\kappa}(\nu) - \widehat{\kappa}(-\nu)\right)\right)$$

 \Rightarrow most simple solution (the only one independent of the model parameters ω, m):

$$\widehat{\chi}(\nu) = \widehat{\psi}(\nu) = 0$$
 , $\widehat{\kappa}(\nu) - \widehat{\kappa}(-\nu) = 0$

(A): admit $\langle [\eta_s(t),\eta_p(t')] \rangle = \mathrm{i}\hbar\kappa(t-t')$ other commutators vanish expect $\langle [s(t),p(t')] \rangle = \mathrm{i}\hbar K(t-t')$ with $K(0)\stackrel{!}{=} 1$ and find

$$\widehat{K}(
u) = rac{
u^2 - \mathrm{i}\lambda
u + \omega^2}{\left(
u^2 - \mathrm{i}\lambda
u - \omega^2
ight)\left(
u^2 + \mathrm{i}\lambda
u - \omega^2
ight)}\,\widehat{\kappa}(
u)$$

if $\widehat{\kappa}(\nu) = \kappa_0$, then $K(0) = \sqrt{2\pi} \kappa_0 \lambda^{-1}$ $\Rightarrow \sqrt{2\pi} \kappa_0 = \lambda$ this gives the non-vanishing noise commutators N.B.: $\widehat{\kappa}(\nu)$ must be symmetric

$$\left| \left\langle \left[\eta_s(t), \eta_p(t') \right] \right\rangle = \mathrm{i} \hbar \lambda \delta(t - t') \ , \ \left\langle \left[\widehat{\eta}_s(\nu), \widehat{\eta}_p(\nu') \right] \right\rangle = \delta(\nu + \nu') \mathrm{i} \hbar \lambda \right|$$

(B'): from perturbed H, linear responses of momentum and of spin are known $\widehat{R}^{(p)}(\nu) = m^2 \omega^2 \widehat{R}^{(s)}(\nu) = -(2\pi)^{-1/2} m \omega^2 \left(\nu^2 - i\lambda\nu - \omega^2\right)^{-1}$ (R)

$$\widehat{R}^{(s,p)}(\nu) \doteq -\frac{2}{\hbar \mathrm{i}} \frac{1}{\sqrt{2\pi}} \ \widehat{C}_{-}^{(s,p)}(\nu)$$
 .B.: general solution depends on two anti-symmetric functions $\psi($

N.B.: general solution depends on two anti-symmetric functions $\psi(t), \chi(t)$, which contain specific model-parameters m, ω

with the **notation**: $\widehat{C}_{\perp}^{(s)}(\nu,\nu') = \frac{1}{2} \langle \{\widehat{s}(\nu),\widehat{s}(\nu')\} \rangle = \delta(\nu+\nu')\widehat{C}_{\perp}^{(s)}(\nu)$ etc.

and $\langle \{\eta_s(t), \eta_p(t')\} \rangle = 2\gamma(t-t')$

(C): admit $\langle \{\eta_p(t), \eta_p(t')\} \rangle = 2\alpha(t-t'), \langle \{\eta_s(t), \eta_s(t')\} \rangle = 2\beta(t-t')$

the **virial theorem** gives the condition $\widehat{C}_{+}^{(p)}(\nu) \stackrel{!}{=} m^2 \omega^2 \widehat{C}_{+}^{(s)}(\nu)$. Hence

 $\nu^2 \widehat{\alpha}(\nu) + m^2 \omega^4 \widehat{\beta}(\nu) \stackrel{!}{=} \omega^2 \widehat{\alpha}(\nu) + m^2 \omega^2 (\lambda^2 + \nu^2) \widehat{\beta}(\nu) + \lambda m \omega^2 (\widehat{\gamma}(\nu) + \widehat{\gamma}(-\nu))$

$$\widehat{lpha}(
u) = \widehat{eta}(
u) = 0 \;\;,\;\; \widehat{\gamma}(
u) + \widehat{\gamma}(-
u) = 0$$

$$\alpha(\nu) = \beta(\nu) = 0 \quad , \quad \gamma(\nu) + \gamma(-\nu) = 0$$

It is the only solution **independent** of the model's parameters
$$m, \omega$$
.
 $\Rightarrow \widehat{\gamma}(\nu)$ is anti-symmetric! In that case

$$\Rightarrow \widehat{\gamma}(\nu)$$
 is anti-symmetric! In that case
$$\widehat{\gamma}(s)(\nu) = 2i \qquad \nu \widehat{\gamma}(\nu) \qquad \qquad 1 \qquad \widehat{\gamma}(s)(\nu) \qquad \qquad (c)$$

$$\widehat{C}_{+}^{(s)}(\nu) = \frac{2\mathrm{i}}{m} \frac{\nu \widehat{\gamma}(\nu)}{(\nu^2 - \mathrm{i}\lambda\nu - \omega^2)(\nu^2 + \mathrm{i}\lambda\nu - \omega^2)} = \frac{1}{m^2\omega^2} \widehat{C}_{+}^{(p)}(\nu) \quad \text{(C)}$$
N.B.: general solution depends on two symmetric functions $\alpha(t)$, $\beta(t)$,

which contain specific model-parameters m, ω

(D): find the anti-symmetric function $\widehat{\gamma}(\nu)$ from the QFDT.

$$\frac{\widehat{C}_{+}^{(s)}(\nu)}{\widehat{C}_{-}^{(s)}(\nu)} = \frac{\widehat{C}_{+}^{(p)}(\nu)}{\widehat{C}_{-}^{(p)}(\nu)} = -\frac{1}{\sqrt{2\pi}} \coth \frac{\hbar \nu}{2T}$$

In frequency-space, this requires (! independence of observable s, p!)

Compare the correlator (C) with the response (R) via the Kubo formulæ:

$$2\mathrm{i}\sqrt{2\pi}\;\widehat{\gamma}(
u)=\hbar\lambda\cothrac{\hbar
u}{2T}$$

Consequence: the non-vanishing moments are in frequency-space

$$\boxed{\left\langle \left\{ \widehat{\eta}_{\mathsf{s}}(\nu), \widehat{\eta}_{\mathsf{p}}(\nu') \right\} \right\rangle = \frac{\hbar \lambda}{\mathrm{i}} \, \mathsf{coth} \left(\frac{\hbar \nu}{2\,T} \right) \, \delta(\nu + \nu') \,, \, \, \left\langle \left[\widehat{\eta}_{\mathsf{s}}(\nu), \widehat{\eta}_{\mathsf{p}}(\nu') \right] \right\rangle = \mathrm{i} \hbar \lambda \, \delta(\nu + \nu')}$$

and directly for the times

$$\left\langle \left\{ \eta_s(t), \eta_p(t') \right\} \right
angle = \lambda T \coth \left(rac{\pi T}{\hbar} (t-t')
ight) \; , \; \left\langle \left[\eta_s(t), \eta_p(t')
ight]
ight
angle = \mathrm{i} \hbar \lambda \, \delta(t-t')$$

Illustration: spin-spin correlator
$$C_{+}^{(s)}(t) = C_{+}^{(s)}(t,t)$$

several values of ω

if $\omega > 0$: noisy oscillator, classical and quantum behaviour qualitatively similar for T > 0 saturation of $C_+^{(s)}(t)$ at semi-classical value if $\omega = 0$: freely diffusing brownian particle, $C_+^{(s)}(t) = \langle x^2(t) \rangle$ variance

$$C_{+}^{(s)}(t) = \left\langle x^2(t) \right\rangle \overset{t \to \infty}{\sim} \left\{ egin{array}{ll} t & T > 0 & ext{classical diffusion} \\ \ln t & T = 0 & ext{quantum diffusion} \end{array}
ight.$$

Brown 1827 Einstein 1905

Hakim & Ambegaokar 1985

N.B.: quantum diffusion mixes system more slowly than classical diffusion

4. Summary & Discussion

* a single quantum particle, with hamiltonian H

* write (a pair of) quantum Langevin equation(s) ohmic dissipation

$$\partial_t s = rac{\mathrm{i}}{\hbar} igl[H, s igr] + \eta_s \;\; , \;\; \partial_t p = rac{\mathrm{i}}{\hbar} igl[H, p igr] - \lambda p + \eta_p igr]$$

for the operators of **position** (spin) s and conjugate **momentum** p and with **dissipation** rate $\lambda > 0$

* the **noise operators** η_s, η_p have the non-vanishing second moments

$$\boxed{\left\langle \left\{ \eta_s(t), \eta_p(t') \right\} \right\rangle = \lambda T \coth \left(\frac{\pi T}{\hbar} (t - t') \right) , \left\langle \left[\eta_s(t), \eta_p(t') \right] \right\rangle = \mathrm{i} \hbar \lambda \, \delta(t - t')}$$

 \Rightarrow describes the relaxation towards a quantum equilibrium state and reproduces classical dynamics in the $\hbar \to 0$ limit

- * physical content behind quantum Langevin equation was made explicit (canon. commutator, Kubo formulæ, virial theorem, quantum FDT)
- * non-markovianity appears explicitly in $\langle \{\eta_s(t), \eta_p(t')\} \rangle$
- * no time-delay in dissipation required, ohmic resistance enough to yield non-markovianity
- * physical link with the quantum FDT see Pasquale, Ruggiero, Zannetti 1984
- ⇒ quantum FDT and Markov property mutually exclusive
- * mathematical equivalence to the Ford-Kac-Mazur (FKM) quantum Langevin equation
- * noise correlators independent of model parameters \Rightarrow generic result
- * noise correlators contain less derivatives than in FKM
 - ⇒ useful for numerical studies ?
- * formulate treatable models with clear, and physically motivated, ingredients
 - \rightarrow e.g. quantum spherical models \rightarrow work in progress
- * explicit treatment of such systems might help to appreciate better the applicability of more complex procedures (such as Lindblad equations)

A last formal observation

should recover classical white noise in the classical limit $\hbar \to 0$

- * does require care, since singular contributions arise

 (usual 'Fourier integral representations' of the noise correlators very strongly divergent!)
- * must separate noise correlators into
 (i) 'regular' and (ii) 'singular' (distributions!) parts

leads to

$$\left\langle \left\{ \eta_{s}(t), \eta_{p}(0) \right\} \right\rangle = \lambda T \left[\underbrace{\frac{\exp\left(-\frac{\pi T}{\hbar}|t|\right)}{\sinh\left(\frac{\pi T}{\hbar}t\right)}}_{\text{regular}} + \underbrace{\frac{\operatorname{sgn} t}{\operatorname{singular}}}_{\text{singular}} \right], \quad \left\langle \left[\eta_{s}(t), \eta_{p}(0) \right] \right\rangle = \mathrm{i} \hbar \lambda \underbrace{\delta(t)}_{\text{ellipsi}}$$

N.B. important if derivatives of these correlators are needed