Does KPZ describe pushed interfaces with quenched disorder?

CompPhys18

Leipzig November 30, 2018

Outline:

- Kardar-Parisi-Zhang:
 - Recent successes for d = 2 (i.e., 1 + 1) versus stagnation for d > 2
- Frozen disorder: rough interfaces & percolation: Generalized percolation, T = 0 RFIM, "mimimal model"
- d=2
- Morphological phase transitions for supercritical percolation: Sponge phases
 - Bond percolation, $3 \le d \le 6$
 - GEP
- KPZ for non-spongy transition in d = 3?

KPZ:

Driven interfaces with **annealed** noise Critical exponent known exactly in d = 2 (1 - d interfaces) Scaling functions also known exactly in d = 2d > 2: exponents known approximately; upper critical dimension = ?

Experimental verification:

• Old experiments (< 2000): uncontrolled mix of annealed & quenched noise:

burning cigarette paper, coffee filter wetting, wetting in sponges, magnetic domain propagation, \ldots

 \longrightarrow no clear conclusions

• Takeuchi et al., 2010: very well controlled; d = 2 \rightarrow everything ok. Frozen disorder:

Interfaces can get **pinned** !

Critically pinned interfaces:

- Fractal: percolation
- non-fractal but rough: self-affine

Transitions between both observed since 1980's: Robbins, Cieplak, Ji, Martys, Koiller, ...

- Small surface tension in fluid imbibition, large disorder in RFIM: \rightarrow fractal
- High surfae tension, small disorder: \rightarrow rough surfaces

But little deeper understanding

Generalized Epidemic Process (GEP)

H.-K. Janssen et al., 2004

 $p_k = \text{prob}\{ \text{ site gets infected (wetted) during } k\text{-th attack} \}$ $q_k = q_{k-1} + (1 - q_{k-1})p_k = \text{prob}\{ \text{ site is infected after } k\text{-th attack}\}$

Critical interface is non-fractal, if p_k increases sufficiently with kTransition fractal \leftrightarrow non-fractal is **tricritical point**

Special GEP's:

• T=0 RFIM without spontaneous nucleation:

Spins flip, when neighboring spins have flipped $p_k = \text{prob}\{\text{neighbor flip-ping pushes local magnetic field above/below zero}\}$

• "Minimal model": $p_2 \neq p_1$, but $p_k = p_2$ for k > 2

All following results are for minimal model, but all tests with other versions show universal behavior

d = 2:

- Critically pinned interfaces are **always** in percolation universality class (P. Grassberger, arXiv:1711.02904; PRL 2017)
- Supercritical GEP \sim KPZ

Morphological phase transitions for supercritical percolation:

Site percol., $d \ge 3$:

 $p_c < 1/2$ \rightarrow for $p_c , there exist co-existing <math>\infty$ clusters (wetted & non-wetted sites both percolate)

Is this also true for – bond percolation? – for GEP?

Simulations:

- Hyperplane seed: start with entire L^{d-1} "bottom hyperplane" of $d-{\rm dimensional}$ lattice infected
- Spread the epidemic into region z > 0, with periodic lateral b.c.
- Stop epidemic just before top hyperplane $z = L_z$ is reached
- Starting from top hyperplane, find the hull of th infected cluster by means of (depth-first) recursive hull-walking algorithm
- How far does hull reach down? Are there "fjords" or "channels" in where hull reaches down to bottom? Average hull mass =?

d = 5, bond percolation:

Thresholds for spongy clusters at bond percolation:

d	p_{inf}	p{fin} / p_c
3	0.3605(10)	1.449
4	0.2987(10)	1.865
5	0.2586(5)	2.188
6	0.2291(5)	2.432

B. Bock et al., aXiv:1811.01678 (2018):

- Existence of multiple supercritical bond percolation clusters proven for $d \geq 8$
- $p_{inf} > \log(d)/2d$ for large d

d = 5, minimal model GEP:

d = 4, minimal model GEP:

d = 3, minimal model GEP:

- In spongy phase, obviously no KPZ scaling
- KPZ in compact (non-spongy) phase?
- d = 3, minimal model GEP with $p_1 = 0.04$:

Similar for $p_1 = 0$:

Conclusions:

- Existence of multiple coexisting supercritical clusters: \rightarrow "spongy" phases, where clusters penetrate each other
- Transition spongy \leftrightarrow compact is a true (2nd order?) phase transition, at least for $3 \leq d < 6$
- For d = 6 is transition more complex?
- Even in compact (non-spongy) phase, interfaces in d = 3 are NOT in KPZ universality class
- d = 2:
 - No fractal \leftrightarrow nonfractal transition for critical surfaces
 - supercritical surfaces are KPZ