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Outline:

• Kardar-Parisi-Zhang:
Recent successes for d = 2 ( i.e., 1 + 1)
versus stagnation for d > 2

• Frozen disorder: rough interfaces & percolation:
Generalized percolation, T = 0 RFIM, ”mimimal model”

• d = 2

• Morphological phase transitions for supercritical percolation:
Sponge phases

– Bond percolation, 3 ≤ d ≤ 6

– GEP

• KPZ for non-spongy transition in d = 3?
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KPZ:
Driven interfaces with annealed noise
Critical exponent known exactly in d = 2 (1− d interfaces)
Scaling functions also known exactly in d = 2
d > 2: exponents known approximately; upper critical dimension = ?

Experimental verification:

• Old experiments (< 2000): uncontrolled mix of annealed & quenched
noise:
burning cigarette paper, coffee filter wetting, wetting in sponges, mag-
netic domain propagation, ...
−→ no clear conclusions

• Takeuchi et al., 2010:
very well controlled;
d = 2
−→ everything ok.
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Frozen disorder:

Interfaces can get pinned !

Critically pinned interfaces:

• Fractal: percolation

• non-fractal but rough: self-affine

Transitions between both observed since 1980’s:
Robbins, Cieplak, Ji, Martys, Koiller, ...

• Small surface tension in fluid imbibition, large disorder in RFIM: →
fractal

• High surfae tension, small disorder: → rough surfaces
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But little deeper understanding

Generalized Epidemic Process (GEP)
H.-K. Janssen et al., 2004

pk = prob{ site gets infected (wetted) during k-th attack}
qk = qk−1 + (1− qk−1)pk = prob{ site is infected after k-th attack}

Critical interface is non-fractal, if pk increases sufficiently with k
Transition fractal ↔ non-fractal is tricritical point
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Special GEP’s:

• T=0 RFIM without spontaneous nucleation:

Spins flip, when neighboring spins have flipped pk = prob{neighbor flip-
ping pushes local magnetic field above/below zero}

• “Minimal model”: p2 6= p1, but pk = p2 for k > 2

All following results are for minimal model, but all tests with other
versions show universal behavior
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d = 2:

• Critically pinned interfaces are always in percolation universality class
(P. Grassberger, arXiv:1711.02904; PRL 2017)

• Supercritical GEP ∼ KPZ
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Morphological phase transitions for supercritical percolation:

Site percol., d ≥ 3:

pc < 1/2
→ for pc < p < 1− pc, there exist co-existing ∞ clusters
(wetted & non-wetted sites both percolate)

Is this also true for
– bond percolation?
– for GEP?
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Simulations:

• Hyperplane seed:
start with entire Ld−1 “bottom hyperplane” of d−dimensional lattice
infected

• Spread the epidemic into region z > 0, with periodic lateral b.c.

• Stop epidemic just before top hyperplane z = Lz is reached

• Starting from top hyperplane, find the hull of th infected cluster by means
of (depth-first) recursive hull-walking algorithm

• How far does hull reach down?
Are there “fjords” or “channels” in where hull reaches down to bottom?
Average hull mass =?
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d = 5, bond percolation:
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d = 6, bond percolation:
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Thresholds for spongy clusters at bond percolation:

d p_{inf} p{fin} / p_c

3 0.3605(10) 1.449

4 0.2987(10) 1.865

5 0.2586(5) 2.188

6 0.2291(5) 2.432

B. Bock et al., aXiv:1811.01678 (2018):

• Existence of multiple supercritical bond percolation clusters proven for
d ≥ 8

• pinf > log(d)/2d for large d
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d = 5, minimal model GEP:
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d = 4, minimal model GEP:
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d = 3, minimal model GEP:
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• In spongy phase, obviously no KPZ scaling

• KPZ in compact (non-spongy) phase?

d = 3, minimal model GEP with p1 = 0.04:
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Similar for p1 = 0:
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Conclusions:

• Existence of multiple coexisting supercritical clusters:
→ “spongy” phases, where clusters penetrate each other

• Transition spongy↔ compact is a true (2nd order?) phase transition, at
least for 3 ≤ d < 6

• For d = 6 is transition more complex?

• Even in compact (non-spongy) phase, interfaces in d = 3 are NOT in
KPZ universality class

• d = 2:
– No fractal ↔ nonfractal transition for critical surfaces
– supercritical surfaces are KPZ
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