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The random-field Ising model (RFIM)

H = −J
∑
〈x ,y〉

SxSy −
∑
x

hxSx ; Sx = ±1; J > 0

{hx} independent random magnetic fields with zero mean and dispersion σ.

Experimental relevance: Diluted antiferromagnets in a homogeneous external
field, fluids in porous media, and many others.

Imry-Ma argument (σ � J): O(JRD−1) vs. O(σRD/2) → Dl = 2.

- -

+
-

+

+

+

+

-
+

2R

-
-

+

-
-

-

RG suggests Du = 6 → physically relevant dimensions 3 ≤ D < 6.



RG fixed-point and critical exponents
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xy = ∂〈Sx 〉

∂hy
∼ r−(D−2+η) and C

(dis)
xy = 〈SxSy 〉 ∼ r−(D−4+η̄) → {ν, η, η̄}.

Fξ ≈ kbT + σξθ → 2− α = (D − θ)ν, where θ = 2− η̄ + η.



Dimensional reduction
Mapping to the pure Ising model (IM)

I Parisi and Sourlas in 1979 proposed the famous conjecture of dimensional
reduction: The critical behavior of the RFIM at dimension D is the same
as that of the pure IM at dimension D − 2 (η = η).

I Unfortunately, we know today that the RFIM orders in D = 3 while the
IM in D = 1 does not.

I Is there an intermediate dimension Dint < Du such that the dimensional
reduction is accurate for D > Dint?

I Previous numerical works offered inconclusive and in many cases
contradictory results. One of the main reasons is that scaling corrections
(the Achilles’ heel in the random-field problem) were neglected.

I An exception is the functional RG work by Tissier and Tarjus that
proposed Dint ≈ 5.1, see PRL 107, 041601 (2011).



Targets of our work from 2011 and on
(D = 3, 4, and D = 5)

1. Examine claims of universality violation by comparing different
random-field distributions.

2. Provide high-accuracy estimates for the complete set of critical exponents
and for other universal ratios.

3. Check the validity of the fundamental scaling relations.

4. Test the conjecture of dimensional reduction RFIM(D) → IM(D−2).



Computational scheme

1. Optimization algorithms: We work at T = 0 taking advantage of the
zero-T RG fixed point using efficient graph-theoretical algorithms that
calculate exact ground states of the model in polynomial time.

2. Fluctuation-dissipation formalism: We compute both connected and
disconnected correlation functions and the respective correlation lengths.

3. Re-weighting extrapolation: From a single simulation we extrapolate
the mean value of observables to nearby parameters of the disorder
distribution.

4. Random-field distributions:

I P(G)(hx , σ) = 1√
2πσ2

e
− h2

x
2σ2

I P(P)(hx ;σ) = 1
2|σ|e

−|hx |/σ

5. Disorder averaging: 107 samples.

6. System sizes: LD
max = {1923, 604, 285}.

N.G. Fytas and V. Mart́ın-Mayor, PRE 93, 063308 (2016).



Finite-size scaling within the quotients method
We compare dimensionless observables g at pairs of (L, 2L), g2L/gL = 2.

g = ξ(con)/L, ξ(dis)/L, and the Binder ratio U4 = 〈m4〉/〈m2〉
2
.

gcross
(L);(2L)

= g∗ +O(L−ω).
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4D Gaussian RFIM

We also have dimensionful quantities O: derivatives of ξ(con) and ξ(dis) → ν ;
derivatives of χ(con) and χ(dis) → η and η̄ (also χ(dis)/[χ(con)]2 → 2η − η̄).

(O2L/OL)cross = 2xO/ν +O(L−ω).



Non-monotonic behavior
Possible explanation of previously reported universality violations
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Higher-order corrections are necessary: gL = g∗ + a1L
−ω + a2L

−2ω + a3L
−3ω.



Fitting scheme

1. We restrict to data with L ≥ Lmin. To determine an acceptable Lmin we
employ the χ2-test, computed using the complete covariance matrix.

2. We consider a fit as being fair only if 10% < p < 90%, where p is the
probability of finding a χ2 value which is even larger than the one actually
found from our data.

3. As a rule, we keep the lowest order for which an acceptable Lmin can be
found. Having decided the order of L−ω, we also keep the smallest
possible Lmin.

4. We fit simultaneously several data sets for the 2 field distributions and 3
crossing points.

5. We use a two-step approach:

I Estimation of ω using joint fits for several magnitudes.

I Individual extrapolation of all other observables fixing ω.



Universality in the 4D RFIM
ω = 1.30(9)
ξ(con)/L = 0.6584(8)
η = 0.1930(13) 6= 0.25 = η(2D IM)
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Critical exponent ν of the 4D RFIM

ν = 0.8718(58) 6= 1 = ν(2D IM)
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Summary of results for the 4D RFIM

QF χ2=DOF

ω 1.30(9) 1.60(14)

ξðconÞ=L 0.6584(8) 27.85=29

η 0.1930(13) 0.1922(10)

σcðGÞ 4.17749(4)(2) 5.6=7
σcðPÞ 3.62052(3)(8) 8.85=11
U4 1.04471(32)(14) 10=11

ξðdisÞ=L 2.4276(36)(34) 16=15

ν 0.8718(58)(19) 62.9=55
2η − η̄ 0.0322 (23)(1) 16.0=19

2η 6= η̄ (clear case).

N.G. Fytas, V. Mart́ın-Mayor, M. Picco, and N. Sourlas, PRL 116, 227201 (2016).



Universality in the 5D RFIM
ω = 0.66(15) ∼ 0.82966(9) = ω(3D IM)

ξ(con)/L = 0.4901(55)
η = 0.055(15) ∼ 0.036298(2) = η(3D IM)
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Critical exponent ν of the 5D RFIM

ν = 0.626(15) ≈ 0.629971(4) = ν(3D IM)

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 00 . 5 1

0 . 5 4

0 . 5 7

0 . 6 0

0 . 6 3

0 . 6 6

 G ( c o n )

 G ( d i s )

 G ( U 4 )

 P ( c o n )

 P ( d i s )

 P ( U 4 )

 

 
ν(ef

f)

L - ω

ξ( d i s )  /  L



Summary of results for the 5D RFIM

N.G. Fytas, V. Mart́ın-Mayor, M. Picco, and N. Sourlas, PRE 95, 042117 (2017).



A statistical test

We make the null-hypothesis of equality of the two universality classes.
Within our accuracy the two universality classes are indistinguishable.



Conclusions
An overview of results for the RFIM at 3 ≤ D < 6

A short review:
N.G. Fytas, et al., J. Stat. Phys. 172, 665 (2018).


