Newton

$$m\ddot{x} = -\partial_x V$$

deterministic and smooth path

Newton

$$m\ddot{x} = -\partial_x V$$

deterministic and smooth path

Nelson

$$m\mathrm{d}x = \tilde{v}\mathrm{d}t + \sigma\mathrm{d}W$$

random and non differentiable path

Newton

$$m\ddot{x} = -\partial_x V$$

deterministic and smooth path

Nelson

$$m\mathrm{d}x = \tilde{v}\mathrm{d}t + \sigma\mathrm{d}W$$

random and non differentiable path

Schrödinger

$$i\hbar\dot{\psi} = H\psi$$

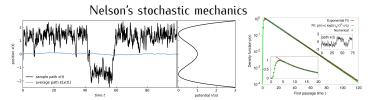
path?

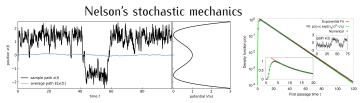
Newton

$$m\ddot{x} = -\partial_x V$$

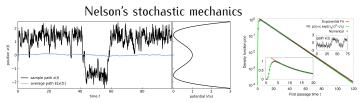
deterministic and smooth path

Nelson

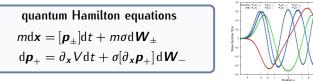

$$m \mathrm{d}x = \tilde{v} \mathrm{d}t + \sigma \mathrm{d}W$$

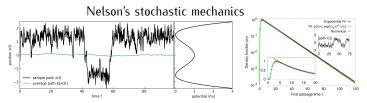

random and non differentiable path

Schrödinger

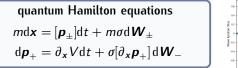

$$i\hbar\dot{\psi} = H\psi$$

path?

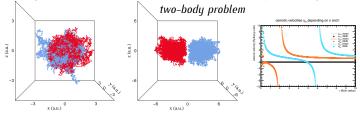




extending the links between the formalisms of quantum and classical mechanics



extending the links between the formalisms of quantum and classical mechanics



extending the links between the formalisms of quantum and classical mechanics

analogies drawn to classical mechanics for multi-particle systems

