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Timeline of generalized ensemble techniques

These advanced Monte Carlo technique are designed to estimate the density of
states.

I 1986 - Replica-exchange (Swendsen, Wang)
I 1989 - Multiple histogram reweighting (Ferrenberg, Swendsen)
I 1991 - Parallel tempering (Geyer; 1996 Hukushima, Nemoto)
I 1992 - Multicanonical (MUCA) sampling (Berg, Neuhaus)
I 2001 - Wang-Landau sampling (Wang, Landau)
I 2013 - Parallel MUCA (Zierenberg, Marenz, Janke) (few cores)

Now we expand the parallel MUCA algorithm to tens of thousands of cores.
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Parallel multicanonical weight iteration

The canonical partition sum can be rewritten in terms of the density of states
Ω(E)

Zcan =
∑
E

Ω(E)e−βE → Zmuca =
∑
E

Ω(E)W (E)

Figure: Flat histogram

For a flat histogram W (E) ∝ Ω−1(E). Since the density of states is usually not
known in advance, the weights have to be determined iteratively.
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Parallel multicanonical weight iteration
The time-consuming generation of statistics is distributed on p independent
worker processes. The parallelization profits from a minimum of
communication because communication happens only once per iteration.
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Figure: Parallel multicanonical simulation scheme
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Hardware overview

We aim to achieve a fair comparison of two hardware architectures.
Same parallel implementation on CPU and GPU, as opposed to highly
optimized GPU code vs. serial CPU code.

CPU GPU1 GPU2
model 2× Xeon E5-2640 Tesla K20m (ECC) GTX Titan Black
peak clock speed 3072MHz 706MHz 980MHz
# cores 12 (24 w/ HT) 2496 2880
SMX N/A 13 15
memory bandwidth 42.6GB/s 208GB/s 336GB/s
peak performance 2× 120GFlop/s 3.5TFlop/s 5.1TFlop/s
thermal design power 2×95W 225W 250W

Table: List of considered CPU and GPU hardware with selected properties, including
the clock speed, the number of total cores, the number of streaming multiprocessors
(SMX), the memory bandwidth and the power consumption (thermal design power
TDP). Both GPUs are from the Kepler generation such that each SMX features 192
cores.
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GPU architecture

I GPGPUs specifically designed for
HPC

I but also gaming PC GPUs can be
used

I features streaming multiprocessors
(SMX) with multiple cores

I currently ∼ 2500 to 3000 cores in
total

I available memory typically 6 GB to
12GB

I programmed using CUDA, a
subset of C99/C++

I you have to optimize your code for
different layers of memory

I overload cores with many threads
to hide memory latency (get
optimal number of worker threads
using CUDA occupancy calculator)
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Implementation

Our test system is the 2D Ising model with periodic boundary conditions.

We use the same code base for MPI and CUDA. All MUCA specific code is
identical, only slight architecture specific code.
Some implementational remarks:

I each worker has own copy of the lattice
I CPU workers have individual histograms, which are combined using

MPI_Reduce
I GPU workers write to same histogram using atomic operations (memory

coalescence)
I weight update on CPU identical for both
I 2 instances of Philox RNG per worker

I fast RNG with good period and small memory footprint
I selection RNG - always pick same spin in each lattice (memory coalescence)
I acceptance RNG

This implementation ensures identical timeseries and histograms for CPU and
GPU, if parameters are the same (number of workers and seeds, specifically).
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Simulational parameters

Each weight iteration:
I NUPDATES_THERM = min(100, 30 · width)

I while (width < N)
NUPDATES_MEASURE = 6 · width2.25/NUM_WORKERS

I NUPDATES_MEASURE *= 1.1 until flat
Production run:

I thermalization with NUPDATES_THERM = N2.25

I NUPDATES_MEASURE calculated from spinflip times to set fixed
runtime (10min)

width - width of energy range covered
N = L2 - full energy range
L - lattice size
NUPDATES_THERM - number of thermalization updates (spin flips)
NUPDATES_MEASURE - number of measurement updates

J. Zierenberg et. al, CPC 184 1155 (2013).
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How to tell if your histogram is flat?

I Most flat histogram methods stop the iteration when the histogram is “flat
enough”.
As an example we aim for 80% flatness in our histogram, that means
if 0.8 · hmean ≤ H(E) ≤ hmean/0.8 ∀E , with
hmean = 1

NM

∑
H(E) our histogram is flat.

I Related to Chebyshev distance

But with this a flat histogram does not necessarily your weights are perfect.

Comparing histograms is the basis for digital image processing, so we borrowed
one of the 26 methods we found.

I Kullback-Leibler divergence, measure of difference between two probability
distributions P and Q

I dk =
∑

i P(i) log P(i)
Q(i)

I in our implementation we use
P(i) = H(E)/NUPDATES_MEASURE and Q(i) = 1/NUM_BINS
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Thermalization

Influence of the number of thermalization steps on the converge of the
Kullback-Leibler divergence.
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Figure: Kullback-Leibler divergence as function of iterations.
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Hardware performance
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Figure: Hardware performance: spin flip times in ns as function of number of workers.

Average CPU spin flip time similar for all system sizes tCPU ≈ 3.5 ns.
Optimal GPU spin flip times – Tesla: 0.21 ns Titan: 0.16 ns
This results in theoretical hardware speedups of factors of 16 and 21,
respectively.
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Iterations until convergence
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Time to convergence
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I solid horizontal lines represent CPU reference times
I vertical dashed lines mark full GPU utilization
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Speedup

Software speedup defined by the ratio of CPU and GPU time to convergence.
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Density of states
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Figure: Density of states for the 2D Ising model obtained from simulation in
comparison with exact solution from Beale. The inset shows the deviation of our
simulational results from the Beale solution as well as Jackknife errors.
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Conclusions and outlook

Conclusions
I Comparison of identical implementation of parallel MUCA using MPI and

CUDA (both operating at peak performance)

I speedup of 20x-30x per GPU compared to a single modern CPU node (12
core plus hyperthreading)

I this is equivalent to a speedup of 300x-500x when compared to a single
CPU worker

I Kullback-Leibler divergence is a reliable, well-defined flatness criterion
I scientific Tesla cards have very stable performance
I consumer cards can deliver even better performance with decreased

“stability” for a fraction of the price

Outlook
I Fully documented source code will be available soon
I Application to aggregation of bead-spring polymers already implemented
I Extension to multiple GPUs should be straight-forward
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Thank you for your attention.

Funding:

Polymers under multiple constraints
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