Structure Formation In Helical Polymers

Matthew Williams and Michael Bachmann

Soft Matter Systems Research Group Center for Simulational Physics at The University of Georgia November 27, 2014

Biopolymers

Biopolymers

Coarse Graining

Model

- FENE Potential Bonded interaction $U_{FENE} = -\frac{1}{2}KR^2 \log(1-(\frac{r-r_o}{R})^2)$
- Lennard-Jones Potential Non-bonded interaction $U_{LJ} = 4\epsilon((\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^6)$
- Torsion Potential $E_{ au} = S_{ au} \left(1 - \cos(au - au_0)\right)$
- Bending Potential

$$E_{ heta} = S_{ heta} \left(1 - \cos(heta - heta_0)
ight)$$

Model

- FENE Potential Bonded interaction $U_{FENE} = -\frac{1}{2}KR^2 \log(1-(\frac{r-r_o}{R})^2)$
- Lennard-Jones Potential Non-bonded interaction $U_{LJ} = 4\epsilon((\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^6)$
- Torsion Potential $E_{ au} = S_{ au} \left(1 - \cos(au - au_0)\right)$
- Bending Potential

$$E_{ heta} = S_{ heta} \left(1 - \cos(heta - heta_0)
ight)$$

D. C. Rapaport, PRE 66, 011906 (2002)

Classification Parameters

• Lennard-Jones Near (q₁) Interaction between monomers separated by less than or equal to 6 bonds

(black with red)

• Lennard-Jones Far (q₂) Interaction between monomers separated by more than 6 bonds

(black with blue)

The University of Georgia

RESEARCH GROUP

17

Conclusion

- Helical structures are dictated by a competition between the Lennard-Jones interaction and the torsion potential.
- Bending constraint acts to stabilize helical structures.
- Clustering of states space according to strategically chosen order parameters can be useful in picking out distinct phases.
- We are now exploring adsorption of helical polymers onto a substrate.

This work has been supported partially by the NSF under grant No. DMR-1207437 and by CNPq under grant No. 402091/2012-4.

