Macroscopic degeneracy influences the finite-size scaling at first-order phase transitions

Marco Mueller¹ W. Janke¹ and D. A. Johnston²

¹ Institut für theoretische Physik, Universität Leipzig, Germany
²Department of Mathematics, School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton, Edinburgh, Scotland

> 28th November 2014 (Leipzig)

First-order phase transitions are ubiquitous in nature

(driven by temperature)

(driven by field)

First-order phase transitions

(a) W. Janke, Phys Rev. B 47 (1993) 14757

Standard finite-size scaling

"phase coexistence" idealized for a finite-system close to the transition point $\beta^{\infty} = 1/k_B T^{\infty}$

- ► time fraction $W_{\rm o}$ in ordered phase with energy $\hat{e}_{\rm o}$
- ► time fraction $W_{\rm d}$ in disorderd phase with energy $\hat{e}_{\rm d}$
- energy moments $\langle e^n \rangle = W_{\rm o} \hat{e}_{\rm o}^n + (1 W_{\rm o}) \hat{e}_{\rm d}^n$
- specific heat

$$C_{V}(\beta, V) = -\beta^{2} \partial e(\beta, V) / \partial \beta = V \beta^{2} \left(\left\langle e^{2} \right\rangle - \left\langle e \right\rangle^{2} \right)$$

Standard finite-size scaling

specific heat

$$C_V(\beta, V) = V \beta^2 W_{\rm o}(1 - W_{\rm o}) \Delta \hat{e}^2$$

• maximum value at $W_{\rm o} = W_{\rm d} = 0.5$ and position $\beta^{C_V^{\rm max}}(V)$

$$C_V^{\max}(V) = V(\beta^{\infty}\Delta \hat{e}/2)^2 \propto V$$

Standard finite-size scaling

ratio of time fractions are connected to probabilities of the states

$$W_{
m o}/W_{
m d}\simeq qe^{-Veta \hat{f}_{
m o}}/e^{-eta V\hat{f}_{
m d}}$$

(up to exponentially small corrections) expansion of the logarithm for $W_{\rm o} = W_{\rm d}$,

$$0 = \ln(W_{\rm o}/W_{\rm d}) \simeq \ln q + V\beta(\hat{f}_{\rm d} - \hat{f}_{\rm o})$$

$$\beta^{\mathrm{eqw}} = \beta^{\mathcal{C}_{\mathcal{V}}^{\mathrm{max}}}(\mathcal{V}) = \beta^{\infty} - \frac{\ln q}{\mathcal{V}\Delta\hat{e}} + \dots$$

and analogously for $B(\beta) = 1 - \frac{\langle e^4 \rangle}{3 \langle e^2 \rangle^2}$

$$eta^{m{B}^{
m min}}(m{V})=eta^{\infty}-rac{{\sf ln}(m{q}m{\hat{e}}_{
m o}^2/m{\hat{e}}_{
m d}^2)}{m{V}\Deltam{\hat{e}}}+\dots$$

Gonihedric model

D. A. Johnston, A. Lipowski, and R. P. K. C. Malmini, in *Rugged Free Energy Landscape,s*, Vol. 736 of *Lecture Notes in Physics, Berlin Springer Verlag*, edited by W. Janke (2008), pp. 173–199.

Gonihedric model

Hamiltonian for classical Ising spins in 3d-lattices

$$\mathcal{H} = -2\kappa \sum_{\langle i,j \rangle} \sigma_i \sigma_j + \frac{\kappa}{2} \sum_{\langle \langle i,j \rangle \rangle} \sigma_i \sigma_j - \frac{1-\kappa}{2} \sum_{[i,j,k,l]} \sigma_i \sigma_j \sigma_k \sigma_l$$

- prefactors fine-tuned for vanishing contribution of the area, but edges and self-intersections
- self-avoidance parameter κ

Gonihedric model

$$\mathcal{H} = -\frac{1}{2} \sum_{[i,j,k,l]} \sigma_i \sigma_j \sigma_k \sigma_l$$

earlier inverse transition temperature estimates									
method	mean field	Monte Carlo							
year	1996	1996	2004	2011					
		pbc	fixed bc.	pbc, dual					
β^{∞}	0.325	0.50(1)	0.54757(63)	0.510(2)					

Inconsistent transition temperatures due to

- fixed vs. periodic boundary conditions?
- representations not matching?
- *spoiler* neither!

Multicanonical simulations

$$Z_{\text{can}} = \sum_{\{\sigma\}} e^{-\beta E(\{\sigma\})} = \sum_{E} \Omega(E) e^{-\beta E}$$
$$Z_{\text{muca}} = \sum_{\{\sigma\}} W(E(\{\sigma\})) = \sum_{E} \Omega(E) W(E)$$

weights via simple iteration:

$$W^{(n+1)}(E) = W^{(n)}(E)/H^{(n)}(E)$$

or via more sophisticated, accumulative approach

Standard scaling ansatz

Standard scaling ansatz

Interlude: zero temperature ground state

 span one of the following elementary cubes over the whole lattice

- ▶ whole planes can be flipped (each plane is either "on" or "off")
- \Rightarrow degeneracy of $q = 2^{3L}$

Nonstandard-scaling ansatz

Nonstandard-scaling ansatz

$$\beta^{\mathcal{C}^{\max}}(\mathcal{L}) = \beta^{\infty} - \frac{\ln 2^{3\mathcal{L}}}{\Delta \hat{e}} \frac{1}{\mathcal{L}^3} + \dots$$

$$=\beta^{\infty}-\frac{3\ln 2}{\Delta\hat{e}}\frac{1}{L^{2}}+\mathcal{O}\left(L^{-4}\right)$$

$$\beta^{\boldsymbol{B}^{\min}}(\boldsymbol{L}) = \beta^{\infty} - \frac{\ln(2^{3L}\hat{\boldsymbol{e}}_{\mathrm{o}}^{2}/\hat{\boldsymbol{e}}_{\mathrm{d}}^{2})}{\Delta\hat{\boldsymbol{e}}} \frac{1}{L^{3}} + \dots$$

$$= \beta^{\infty} - \frac{3 \ln 2}{\Delta \hat{e}} \frac{1}{L^2} + \frac{\ln(\hat{e}_{\rm o}^2/\hat{e}_{\rm d}^2)}{\Delta \hat{e}} \frac{1}{L^3} + \mathcal{O}\left(L^{-4}\right),$$

Fitting results

 $\beta^{\infty} = 0.551\,332(8)$ (periodic bc., with higher-order corrections) $\beta^{\infty} = 0.551\,38(5)$ (fixed bc.) transition temperatures from our multicanonical simulations and non-standard FSS:

 $\begin{array}{ll} \beta^{\infty} = 0.551\,332(8) & (\text{periodic bc.}) \\ \beta^{\infty} = 0.551\,38(5) & (\text{fixed bc.}) \\ \beta^{\infty} = 0.551\,43(5) & (\text{dualization}) \end{array}$

Earlier inverse transition temperatures for the plaquette-only gonihedric Ising

method	mean field	Monte Carlo							
year	1996	1996	2004	2011	2011				
		pbc	fixed bc.	pbc, dual	pbc, dual				
β^{∞}	0.325	0.50(1)	0.54757(63)	0.510(2)	0.508(2)				

Planar order parameters ("Fuki-Nuke")

Conclusion and Outlook

 exponential ("macroscopic") low-temperature degeneracy transmutes finite-size scaling corrections

 $1/V = 1/L^d \to 1/L^{d-1}$

 potential other models with this property: antiferromagnetic FCC Ising models, spin ice systems, "orbital" compass model, ANNNI-model, ...

Thank you for your attention

M. Mueller, W. Janke, D. A. Johnston, Phys. Rev. Lett. 112, 200601 (2014);

M. Mueller, D. A. Johnston, W. Janke, Nucl. Phys. B 888, 214 (2014)

Consistency checks

Δê	$\frac{3 \ln(2)}{\Delta \hat{e}}$	$\frac{2\ln(\hat{e}_{\rm O}/\hat{e}_{\rm d})}{\Delta\hat{e}}$	$rac{\ln(\hat{C}_{\mathrm{d}}/\hat{C}_{\mathrm{o}})}{2\Delta\hat{e}}$	$B_{L \to \infty}^{\min}$
0.85130(7)	-	-	-	-
-	-	-	-	0.34729(7)
0.8771(14)	2.371(4)	-	-	-
0.871(14)	2.39(4)	1.6(8)	-	-
0.8770(14)	2.371(4)	-	-	-
0.84(4)	2.47(11)	-	2.8(2.4)	-
_	-	2.03469(7)	-	-
-	-	-	0.892(14)	-
ations 0.85148(5) 0.850968(18)	2.44215(15)	2.03649(27)	0.9594(10)	0.347(4)
	Δê 0.85130(7) - 0.8771(14) 0.877(14) 0.8770(14) 0.84(4) - - ations 0.85148(5) 0.85048(18)	$\begin{array}{c c} \Delta \hat{e} & \frac{3 \ln(2)}{\Delta \hat{e}} \\ \hline 0.85130(7) & - \\ - & - \\ 0.8771(14) & 2.371(4) \\ 0.8770(14) & 2.39(4) \\ 0.8770(14) & 2.371(4) \\ 0.84(4) & 2.47(11) \\ - & - \\ - & - \\ - \\ - & - \\ 0.85148(5) & 2.44215(15) \\ 0.850968(18) & 2.44362(6) \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- strong hysteresis, seen in the dual model
- multicanonical simulations nicely interpolate between the branches, yielding more accurate transition temperatures

