3D ANISOTROPIC SPIN-GLASS MODELS

Anastasios Malakis

Department of Physics, Section of Solid State Physics, University of Athens, Panepistimioupolis, GR 15784 Zografos, Athens, Greece

November 28th, 2014

CompPhys14 Workshop, ITP, Leipzig

Introduction to spin-glass models

Competing interactions, disorder, and frustration

- Uniaxial magnetic materials: $Fe_{1-xi}Mn_{xi}TiO_3$ and $Eu_{1-x}Ba_xMnO_3$
- Neural networks

Introduction to spin-glass models

Competing interactions, disorder, and frustration

- Uniaxial magnetic materials: $Fe_{1-xi}Mn_{xi}TiO_3$ and $Eu_{1-x}Ba_xMnO_3$
- Neural networks

Edwards - Anderson bimodal model

- Ferromagnetic, spin-glass, and paramagnetic phases
- Multicritical point ; Reentrant behavior

Introduction to spin-glass models

Competing interactions, disorder, and frustration

- Uniaxial magnetic materials: $Fe_{1-xi}Mn_{xi}TiO_3$ and $Eu_{1-x}Ba_xMnO_3$
- Neural networks

Edwards - Anderson bimodal model

- Ferromagnetic, spin-glass, and paramagnetic phases
- Multicritical point ; Reentrant behavior
- Anisotropic cases of the Edwards Anderson bimodal model
 - Transverse and Longitudinal anisotropic models.
 - Phase diagrams ; Universality aspects ; Ground-state properties

3D Edwards - Anderson (EA) model

$$\mathcal{H} = -\sum_{\langle ij \rangle} \mathsf{J}_{ij} \mathsf{s}_i \mathsf{s}_j$$

3D Edwards - Anderson (EA) model

$$\mathcal{H} = -\sum_{\langle ij \rangle} \mathsf{J}_{ij} \mathsf{s}_i \mathsf{s}_j$$

• exchange interaction $\pm J$

• 3D Edwards - Anderson (EA) model

$$\mathcal{H} = -\sum_{\langle ij
angle} \mathsf{J}_{ij} \mathsf{s}_i \mathsf{s}_j$$

- exchange interaction ±J
- bimodal distribution of uncorrelated J_{ii}

$$P(J_{ij}) = p\delta(J_{ij} + J) + (1 - p)\delta(J_{ij} - J)$$

p: probability of nn spins with antiferromagnetic interaction

3D Edwards - Anderson (EA) model

$$\mathcal{H} = -\sum_{\langle ij
angle} \mathsf{J}_{ij} \mathsf{s}_i \mathsf{s}_j$$

- exchange interaction ±J
- bimodal distribution of uncorrelated J_{ii}

$$P(J_{ij}) = p\delta(J_{ij} + J) + (1 - p)\delta(J_{ij} - J)$$

p: probability of nn spins with antiferromagnetic interaction

• 3D Edwards - Anderson bimodal (EAB) isotropic model: $\{J = 1 ; p \le \frac{1}{2}\}$

F - P, SG - P, and F - SG transition lines of the 3D EAB model

F - P, SG - P, and F - SG transition lines of the 3D EAB model

Hasenbusch et al, PRB (2008)

F - P, SG - P, and F - SG transition lines of the 3D EAB model

Ceccarelli et al, PRB (2011)

3D anisotropic EAB models

3D anisotropic EAB models

• A more general anisotropic hamiltonian

$$\mathcal{H} = -\sum_{u}\sum_{\langle ij \rangle_{u}} J^{u}_{ij} \mathbf{s}_{i} \mathbf{s}_{j}$$

• A more general anisotropic hamiltonian

$$\mathcal{H} = -\sum_{u}\sum_{\langle ij \rangle_{u}} J^{u}_{ij} \mathbf{s}_{i} \mathbf{s}_{j}$$

• random exchange $\pm J^{xy}$ on the xy planes and $\pm J^z$ on the z axis

• A more general anisotropic hamiltonian

$$\mathcal{H} = -\sum_{u}\sum_{\langle ij\rangle_{u}}J^{u}_{ij}s_{i}s_{j}$$

- random exchange $\pm J^{xy}$ on the *xy* planes and $\pm J^z$ on the *z* axis
- bimodal distribution of J^u_{ii}

$$P(J_{ij}^u) = p_u \delta(J_{ij}^u + J^u) + (1 - p_u)\delta(J_{ij}^u - J^u)$$

 p_u : prob. of spins *ij* having antiferromagnetic interaction

• A more general anisotropic hamiltonian

$$\mathcal{H} = -\sum_{u}\sum_{\langle ij\rangle_{u}}J^{u}_{ij}s_{i}s_{j}$$

random exchange ±J^{xy} on the xy planes and ±J^z on the z axis
bimodal distribution of J^u_{ii}

$$P(J_{ij}^u) = p_u \delta(J_{ij}^u + J^u) + (1 - p_u)\delta(J_{ij}^u - J^u)$$

 p_u : prob. of spins *ij* having antiferromagnetic interaction

• **EAB**:
$$J^z = J^{xy} = J(=1); p = p_z = p_{xy}; p \le \frac{1}{2}$$

A more general anisotropic hamiltonian

$$\mathcal{H} = -\sum_{u}\sum_{\langle ij\rangle_{u}}J^{u}_{ij}s_{i}s_{j}$$

random exchange ±J^{xy} on the xy planes and ±J^z on the z axis
bimodal distribution of J^u_{ii}

$$P(J_{ij}^u) = p_u \delta(J_{ij}^u + J^u) + (1 - p_u)\delta(J_{ij}^u - J^u)$$

 p_u : prob. of spins *ij* having antiferromagnetic interaction

EAB: J^z = J^{xy} = J(= 1); p = p_z = p_{xy}; p ≤ ¹/₂
 Transverse anisotropic: J^z = J^{xy} = J(= 1); p_z = 0; p_{xy} ≤ ¹/₂

A more general anisotropic hamiltonian

$$\mathcal{H} = -\sum_{u}\sum_{\langle ij\rangle_{u}}J^{u}_{ij}s_{i}s_{j}$$

random exchange ±J^{xy} on the xy planes and ±J^z on the z axis
bimodal distribution of J^u_{ii}

$$P(J_{ij}^u) = p_u \delta(J_{ij}^u + J^u) + (1 - p_u)\delta(J_{ij}^u - J^u)$$

 p_u : prob. of spins *ij* having antiferromagnetic interaction

- **EAB**: $J^z = J^{xy} = J(=1); p = p_z = p_{xy}; p \le \frac{1}{2}$
- **Transverse** anisotropic: $J^z = J^{xy} = J(=1)$; $p_z = 0$; $p_{xy} \le \frac{1}{2}$
- Longitudinal anisotropic: $J^z = J^{xy} = J(=1)$; $p_{xy} = 0$; $p_z \le \frac{1}{2}$

Anisotropic spin-glass models on hierarchical lattices

Global phase diagrams at $K_z/K_{xy} = 0.5$ (K = J/T): **Re-entrant** and **forward** F - SG transition lines

Figure: Guven et al, PRE (2008)

Anisotropic spin-glass models on the simple cubic lattice

Transverse and **longitudinal** models at $K_z/K_{xy} = 1$: **Re-entrant** and **forward** (?) F - SG transition lines

- A Monte Carlo method using *M* canonical simulations $(T_m; x_m)$
 - m = 1, 2, ..., M (T_1 is the lowest T, T_M is the highest T)
 - At each T_m the replica x_m is simulated by Metropolis algorithm

- A Monte Carlo method using *M* canonical simulations $(T_m; x_m)$
 - m = 1, 2, ..., M (T_1 is the lowest T, T_M is the highest T)
 - At each T_m the replica x_m is simulated by Metropolis algorithm
- Exchanges of replicas *i* and *j* (1 and 2) are attempted

- A Monte Carlo method using *M* canonical simulations $(T_m; x_m)$
 - m = 1, 2, ..., M (T_1 is the lowest T, T_M is the highest T)
 - At each T_m the replica x_m is simulated by Metropolis algorithm
- Exchanges of replicas *i* and *j* (1 and 2) are attempted
- The exchanges are accepted with acceptance probability:

$$P_{\text{acc}} = p(E_1, T_1 \leftrightarrow E_2, T_2) = \min[1, \exp(\Delta\beta\Delta E)],$$

with

$$\Delta \beta = 1/T_2 - 1/T_1; \Delta E = E_2 - E_1$$

- A Monte Carlo method using *M* canonical simulations $(T_m; x_m)$
 - m = 1, 2, ..., M (T_1 is the lowest T, T_M is the highest T)
 - At each T_m the replica x_m is simulated by Metropolis algorithm
- Exchanges of replicas *i* and *j* (1 and 2) are attempted
- The exchanges are accepted with acceptance probability:

$$P_{\text{acc}} = p(E_1, T_1 \leftrightarrow E_2, T_2) = \min[1, \exp(\Delta \beta \Delta E)],$$

with

$$\Delta \beta = 1/T_2 - 1/T_1; \Delta E = E_2 - E_1$$

Selection of temperatures: constant acceptance exchange

• Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$

- Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$
- Finite-size anomalies: $[Z]^*$ (Peaks of $[C], [\chi]$, etc.)

- Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$
- Finite-size anomalies: $[Z]^*$ (Peaks of $[C], [\chi]$, etc.)

• Temperature shifts: $T_L^* = T_c + bL^{-1/\nu}$

- Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$
- Finite-size anomalies: $[Z]^*$ (Peaks of $[C], [\chi],$ etc.)
 - Temperature shifts: $T_L^* = T_c + bL^{-1/\nu}$
 - Magnetic susceptibility: $[\chi_L]^* \sim L^{\gamma/\nu}$

- Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$
- Finite-size anomalies: $[Z]^*$ (Peaks of $[C], [\chi],$ etc.)
 - Temperature shifts: $T_L^* = T_c + bL^{-1/\nu}$
 - Magnetic susceptibility: $[\chi_L]^* \sim L^{\gamma/\nu}$

•
$$\frac{\partial \ln \langle M^2 \rangle}{\partial K} = \frac{\langle M^2 H \rangle}{\langle M^2 \rangle} - \langle H \rangle : \left[\left(\frac{\partial \ln \langle M^2 \rangle}{\partial K} \right)_L \right]^* \sim L^{1/\nu}$$

- Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$
- Finite-size anomalies: $[Z]^*$ (Peaks of $[C], [\chi],$ etc.)
 - Temperature shifts: $T_L^* = T_c + bL^{-1/\nu}$
 - Magnetic susceptibility: $[\chi_L]^* \sim L^{\gamma/\nu}$

•
$$\frac{\partial \ln \langle M^2 \rangle}{\partial K} = \frac{\langle M^2 H \rangle}{\langle M^2 \rangle} - \langle H \rangle : \left[\left(\frac{\partial \ln \langle M^2 \rangle}{\partial K} \right)_L \right]^* \sim L^{1/\nu}$$

• Binder cumulant: $U_Z = 1 - \frac{[\langle Z^4 \rangle]}{3[\langle Z^2 \rangle]^2}$

- Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$
- Finite-size anomalies: $[Z]^*$ (Peaks of $[C], [\chi],$ etc.)
 - Temperature shifts: $T_L^* = T_c + bL^{-1/\nu}$
 - Magnetic susceptibility: $[\chi_L]^* \sim L^{\gamma/\nu}$

•
$$\frac{\partial \ln \langle M^2 \rangle}{\partial K} = \frac{\langle M^2 H \rangle}{\langle M^2 \rangle} - \langle H \rangle : \left[\left(\frac{\partial \ln \langle M^2 \rangle}{\partial K} \right)_L \right]^* \sim L^{1/\nu}$$

• Binder cumulant: $U_Z = 1 - \frac{[(Z^4)]}{3[(Z^2)]^2}$

•
$$Z$$
 is $< M >$ or $< q >$

- Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$
- Finite-size anomalies: $[Z]^*$ (Peaks of $[C], [\chi], \text{ etc.}$)
 - Temperature shifts: $T_L^* = T_c + bL^{-1/\nu}$
 - Magnetic susceptibility: $[\chi_L]^* \sim L^{\gamma/\nu}$

•
$$\frac{\partial \ln \langle M^2 \rangle}{\partial K} = \frac{\langle M^2 H \rangle}{\langle M^2 \rangle} - \langle H \rangle : \left[\left(\frac{\partial \ln \langle M^2 \rangle}{\partial K} \right)_L \right]^* \sim L^{1/\nu}$$

- Binder cumulant: $U_Z = 1 \frac{[(Z^4)]}{3[(Z^2)]^2}$
 - *Z* is < *M* > or < *q* >
 - Crossing behavior U_M and U_q

- Order parameters: $M = \frac{1}{N} \sum_{i=1}^{N} s_i$ and $q = \frac{1}{N} \sum_{i=1}^{N} s_i^{\alpha} s_i^{\beta}$
- Finite-size anomalies: $[Z]^*$ (Peaks of $[C], [\chi],$ etc.)
 - Temperature shifts: $T_L^* = T_c + bL^{-1/\nu}$
 - Magnetic susceptibility: $[\chi_L]^* \sim L^{\gamma/\nu}$

•
$$\frac{\partial \ln \langle M^2 \rangle}{\partial K} = \frac{\langle M^2 H \rangle}{\langle M^2 \rangle} - \langle H \rangle : \left[\left(\frac{\partial \ln \langle M^2 \rangle}{\partial K} \right)_L \right]^* \sim L^{1/\nu}$$

- Binder cumulant: $U_Z = 1 \frac{[(Z^4)]}{3[(Z^2)]^2}$
 - *Z* is < *M* > or < *q* >
 - Crossing behavior U_M and U_q
 - Data collapse: $U_Z \approx f[(T T_c)L^{1/\nu}]$

Anisotropic spin-glass models: F - P transition line

F - P transition line

Transverse at $p_{xy} = 0.176$

Longitudinal at $p_z = 0.25$

F - P transition line

Transverse at $p_{xy} = 0.176$

Longitudinal at $p_z = 0.25$

- $v^{(\text{transverse})} = 0.683(3)$
- $v^{(\text{longitudinal})} = 0.687(17)$

ν^(RIM) = 0.6837(53) [Ballesteros *et al.*, PRB **62**, 14237 (2000)]

Anisotropic spin-glass models: SG - P transition line

SG - P transition line

Transverse at $p_{xy} = 0.5$

Longitudinal at $p_z = 0.5$

SG - P transition line

Transverse at $p_{xy} = 0.5$

Longitudinal at $p_z = 0.5$

 Isotropic: T_c = 1.109(10); ν = 2.45(15) [Hasenbusch *et al.*, PRB 78, 214205 (2008)]

• Transverse: $T_c = 1.02(10)$; v = 2.38(20)

• Longitudinal: $T_c = 1.77(8)$; v = 2.381(8)

Anisotropic spin-glass models: F - SG transition line

Longitudinal model: F - SG transition line

Longitudinal model: F - SG transition line

Forward behavior of the F - SG transition line

Tassos Malakis (Univ. of Athens)

Summary of estimates for the longitudinal model

Collapse of the 4th-order Binder's cumulant

	U_M		U_q	
pz	T _c	1/v	T _c	1/v
0.15	3.993(2)	1.465(9)	3.995(2)	1.46(2)
0.25	3.611(2)	1.464(12)	3.6128(9)	1.46(4)
0.35	3.172(2)	1.43(9)	3.166(9)	1.46(4)
0.4	2.90(2)	1.46(21)	2.880(12)	1.47(12)
0.425	2.74(3)	1.46(42)	2.705(33)	1.46(5)
0.45	2.41(12)	0.86(12)	2.43(5)	0.67(12)
0.475			2.00(15)	0.42(8)
0.5			1.77(8)	0.42(5)

Ground-state study

Ground-state study

Lower e_{GS} and higher T_c for the **longitudinal** model

Tassos Malakis (Univ. of Athens)

3D Anisotropic Spin-Glass Models

Disorder and Frustration

Disorder and Frustration

Summary

Universality between models: stochastic disorder and frustration.

- Universality between models: stochastic disorder and frustration.
- Isotropic and transverse models at their symmetry points: have the same global quantitative frustration features, the same critical temperature and ground-state energy.

- Universality between models: stochastic disorder and frustration.
- Isotropic and transverse models at their symmetry points: have the same global quantitative frustration features, the same critical temperature and ground-state energy.
- Longitudinal anisotropic model: weaker global quantitative frustration features and a possible forward F-SG transition line.

- Universality between models: stochastic disorder and frustration.
- Isotropic and transverse models at their symmetry points: have the same global quantitative frustration features, the same critical temperature and ground-state energy.
- Longitudinal anisotropic model: weaker global quantitative frustration features and a possible forward F-SG transition line.

Acknowledgements and reference papers

Collaborators:

- Thodoris Papakonstantinou (Athens University, Greece)
- Nikos Fytas (Coventry University, United Kingdom)
- Ioannis Lelidis (Athens University, Greece)

Acknowledgements and reference papers

Collaborators:

- Thodoris Papakonstantinou (Athens University, Greece)
- Nikos Fytas (Coventry University, United Kingdom)
- Ioannis Lelidis (Athens University, Greece)

Reference papers:

- T. Papakonstantinou and A.M., PRE 87, 012132 (2013)
- A.M. and T. Papakonstantinou, PRE 88,013312 (2013)
- T. Papakonstantinou, et al., arXiv: 1410.8397