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1. Magnets and growing interfaces : analogies

Common properties of critical and ageing phenomena :

* collective behaviour,
very large number of interacting degrees of freedom

* algebraic large-distance and/or large-time behaviour

* described in terms of universal critical exponents

* very few relevant scaling operators

* justifies use of extremely simplified mathematical models
with a remarkably rich and complex behaviour

* yet of experimental significance



Magnets

thermodynamic equilibrium state growth continues forever

order parameter ¢(t,r) height profile h(t,r)

phase transition, at critical temperature T, : same generic behaviour throughout
magnetisation : roughness :

m(t) = (@(t, )| r_y, ~ t77/2) w(t)? = ((h(t,r) = h(£))*) ~ 27
relaxation, after quenchto 7 < T, relaxation, from initial substrate :
autocorrelator autocorrelator C(t,s) =

C(t,s) = (o(t; 1)o(sr)). ((h(t,r) = h(t)) (h(s.¥) = h(s)))

ageing scaling behaviour :

when t,s — oo, and y := t/s > 1 fixed, expect
C(t,s) = s Pfc(t/s) and fc(y) e yAclz

b, B, v and dynamical exponent z : universal & related to stationary state
autocorrelation exponent A\¢ : universal & independent of stationary exponents



Magnets

exponent value b:{ gﬁ/w s exponent value b = —24
models :
(a) gaussian field (a) Edwards-Wilkinson (Ew) :
Hlp] = —%fd" (Vo) Oth=vV2h+n

(b) Ising model

H[g] = —3 [dr [(V§)* +7¢° + §¢*]
suchthat =0+ T =T,

dynamical Langevin equation (Ising) : (b) (KPz) :
o0 = -p™M Oeh = v+ B(VH 4
= DV%p+ 1o+ g+
n(t,r) is the usual white noise, (n(t,r)n(t’,r')) =2T(t — t')d(r — ')
phase transition exactly solved d = 2 growth exactly solved d =1
relaxation exactly solved d =1 CALABRESE & LE DOUSSAL '11

ONSAGER ’44, GLAUBER 63, ... SASAMOTO & SPOHN '10



Question : obtain qualitative understanding by approximate treatment
of the non-linearity ?

LeEwis & WANNIER 52

Ising model : yes, certainly ! ‘:> spherical model ! ‘ BERLIN & Kac 52

(a) for a lattice model : replace Ising spins s; = £1 +— s5; € R, with
(mean) spherical constraint >_.s? = N

(b) for continuum field : replace ¢3 — ¢(¢?) and spherical
constraint [ dr(¢?) ~ 1.

Interest : analytically solvable for any d and in more general contexts
than Ising model, all exponents ...known exactly. Very useful to
illustrate general principles in a specific setting. New universality
class, distinct from the Ising model (O(/N) model with NV — o).

Question : | can one find a similar treatment for the KPZ equation ?
Are there new universality class(es) for interface growth ?
Behaviour different from the rather trivial Ew-equation ?



2. Interface growth & KPZ class

deposition (evaporation) of particles on a substrate — height profile h(t,r)
generic situation : RSOS (restricted solid-on-solid) model  kn & Kosrsnuirz 89

h

here p = 0.98
t f — —t—t— f -
some universality classes :
(a) KPZ 8th = VVQh + % (Vh)2 + Ui IKARDAR, PARISI, ZHANG 86
(b) EW 5th = VV2h + n EDWARDS, WILKINSON 82

7) is a gaussian white noise with (n(t,r)n(t’,r")) =2vTo(t — t')d(r — v')

D p = deposition prob.
T I=p 1 — p = evap. prob.



Family-Viscek scaling on a spatial lattice of extent L9 : h(t) = L~¢ >, hi(t)

FamiLy & VISCEK 85

Ld
1 — N2 _, 126 iftl 7> 1
w?(t; L) = Tl > <(hj(t) — h(t)) > = LXf (tL7%) ~ { 28 . 1f t? < 1

Jj=1
B . growth exponent, ( : roughness exponent,
two-time correlator : limit L — oo

C(t,si) = ((h(z.1) — (R(©)) (h(s.0) = (B(s)))) = s~°Fc (£ 2
with ageing exponent : KALLABIS & KRUG 96

expect for y = t/s>1: Fc(y,0) ~ y~c/Z autocorrelation exponent



1D relaxation dynamics, starting from an initially flat interface
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slow dynamics
observe all 3 properties of ageing : { no TTI
dynamical scaling

confirm simple ageing for the 1D KPZ universality class
confirm expected exponents b = —2/3, A\¢/z =2/3 pars pro toto

KaLLaBis & KruG 96 ; KRECH 97 ; BUSTINGORRY et al. 07-10; CHOU & PLEIMLING 10; D’AQuiLAa & TAUBER 11/12; H.N.P. 12



Values of some growth and ageing exponents in 1D

model z a b AR = Ac¢ I} ¢
Kpz | 3/2 —1/3 —2/3 1 1/3 1/2
exp 1 ~ —2/3f ~ 11 0.336(11) 0.50(5)
exp 2 | 1.5(2) 0.32(4)  0.50(5)
EW 2 12  —1)2 1 1/4 1/2

Two-time space-time responses and correlators consistent with
simple ageing for 1D KPZ

Similar results known for Ew universality class

liquid crystals
(cancer) cell growth

Takeuchi, Sano, Sasamoto, Spohn 10/11/12

Huergo, Pasquale, Gonzalez, Bolzan, Arvia 12

t scaling holds only for flat interface

ROETHLEIN, BAUMANN, PLEIMLING 06




3. Interface growth & (1st) Arcetri model
KPZ — intermediate model — EW

preferentially exactly solvable, and this in d > 1 dimensions

inspiration : mean spherical model of a ferromagnet =~ Bori & Kac 52

LEwis & WANNIER 52

Ising spins s; = +1 obey Z,-s,-z = N = # sites
spherical spins s; € R spherical constraint <E,5,2> =N
hamiltonian H = —J 3~ ; , sisi — A, s? Lagrange multiplier A

exponents non-mean-field for 2 < d <4 and T, > 0 for d > 2

kinetics from Langevin equation O = —DM;*(EM +3(t)p+n

time-dependent Lagrange multiplier 3(t) fixed from spherical constraint
all equilibrium and ageing exponents exactly known, for T < T and T = T,

CONIGLIO & ZANNETTI 89, ...GODRECHE & Luck 00, CORBERI, LIPPIELLO, Fusco. GONNELLA & ZANNETTI 02-14



consider RSOS-adsorption process :

++ -+ - =+ =+ -
use not the heights h,(t) € N on a discrete lattice,
but rather the slopes un(t) = 5 (hpt1(t) — ha-1(t))

can one let u,(t) € R, but impose a spherical constraint

7 consequences of the ‘hardening’ of a soft Ew-interface by a ‘spherical
constraint’ on the u, 7



since u(t,x) = Oxh(t, x) : go from KPZ to Burgers' equation, and
replace its non-linearity by a mean spherical condition

Oeun(t) = v (unta(t) + un-1(t) = 2un(t)) + 5(t)un(t)

4o (1 (8) = 70-a(1)

D (un(t)?) = N

n

Extension to d > 1 dimensions :
define gradient fields u,(t,r) := V h(t,r),a=1,...,d:

Orua(t,r) = vV, Veus(t,r) + 3(t)ua(t,r) + Van(t,r)
d

Z <ua(t, r)2> = N9

a=1

~

interface height : | U,(t,q) = isin g, h(t,q) ;@ # 0 in Fourier space




exact solution : a#0

t
he.) = 0. )e20g(e) /24 [ar (e, )y [ £77) e 27t
0

in terms of the auxiliary function g(t) = exp (—2 fotd75(7)>,
satisfies Volterra equation

e_4tl1 (4t)

i (e *thp(4t)) "

g(t) = f(t)—|—2T/0thg(7')f(t—T) () =d

* for d =1, identical to ‘spherical spin glass’, with
hamiltonian H = —% Z,-J Jijsisj ; Jjj random matrix, its eigenvalues
distributed according to Wigner's semi-circle law CUGLIANDOLO & DEAN 95
* correspondence spherical spins s; <> slopes up,
* kinetics of heights h,(t) is driven by phase-ordering of the spherical
spin glass = 3D kinetic spherical model




phase transition : long-range correlated surface growth for T < T,

1 d [ T
= [ dte "t Hh(t)h(t)r ; T(1) =2, T(2) =

s OO T =2, Te@) =

Some results : upper critical dimension d* =2

1. T = T., d < 2 : sub-diffusive interface motion (h(t)) ~ t(2=9)/4
interface width w(t) = t2-d)/4 — g = ¥
ageingexponentsa:b:%—l, AR =Ac = %—1; z=2

2. T =T, d>2: interface immobile (h(t)) ~ cste.
interface width w(t) = cste. = =0
ageingexponentsa:b:g—l, AR=Ac=d;z=2

3.T < T,
interface width w?(t) = (1— T/T )t = =1
ageing exponents a = % -1, b=—-1 Ap=Ac= dT; z=2




4. Conclusions

@ physical ageing occurs naturally in many systems
relaxing towards generic stationary states
considered here : magnetic systems & surface growth

@ quite analogous scaling phenomenologies

e 15! Arcetri model captures at least some qualitative
properites of KPZ. Specific properties :

o interface becomes more smooth as d — d* = 2; for d > 2 the
EW equation gives the mean-field description

e at T = T, the stationary exponents (3, z) are those of EwW,
but the ageing exponents are different
confirms explicitly general field-theory renormalisation group

e ford=1and T = T, equivalent to p = 2 spherical spin glass

e new kind of behaviour at T < T,

@ in progress : classify all possible ‘spherical /Arcetri models’ and
study their properties



