Spherical models of interface growth

Malte Henkel

Groupe de Physique Statistique Institut Jean Lamour, Université de Lorraine **Nancy**, France

co-author: X. Durang (KIAS Seoul)

CompPhys '14, Leipzig, 27th of November 2014

Overview :

- 1. Magnets and growing interfaces : analogies
- 2. Interface growth & $\rm KPZ$ universality class
- 3. Interface growth and $1^{\rm st}$ Arcetri model
- 4. Conclusions

Common properties of critical and ageing phenomena :

- * collective behaviour,
 - very large number of interacting degrees of freedom
- * algebraic large-distance and/or large-time behaviour
- * described in terms of universal critical exponents
- * very **few** relevant scaling operators
- * justifies use of extremely **simplified mathematical models** with a remarkably rich and complex behaviour
- * yet of experimental significance

Magnets

thermodynamic equilibrium state order parameter $\phi(t, \mathbf{r})$

phase transition, at critical temperature T_c : magnetisation :

 $m(t) = \langle \phi(t, \mathbf{r}) \rangle |_{T=T_c} \sim t^{-eta/(\nu z)}$

relaxation, after quench to $T \leq T_c$ autocorrelator

$$C(t,s) = \langle \phi(t,\mathbf{r})\phi(s,\mathbf{r})\rangle_c$$

Interfaces

growth continues forever height profile $h(t, \mathbf{r})$

same generic behaviour throughout roughness :

 $w(t)^2 = \langle \left(h(t,\mathbf{r}) - \overline{h}(t)\right)^2 \rangle \sim t^{2\beta}$

relaxation, from initial substrate : **autocorrelator** $C(t, s) = \langle (h(t, \mathbf{r}) - \overline{h}(t)) (h(s, \mathbf{r}) - \overline{h}(s)) \rangle$

ageing scaling behaviour :

when $t,s
ightarrow\infty$, and y:=t/s>1 fixed, expect

$$C(t,s) = s^{-b} f_C(t/s)$$
 and $f_C(y) \overset{y \to \infty}{\sim} y^{-\lambda_C/z}$

b, β , ν and dynamical exponent z: universal & related to stationary state autocorrelation exponent λ_c : universal & independent of stationary exponents

Magnets

$$\overrightarrow{\text{exponent}} \text{ value } b = \begin{cases} 0 & ; T < T_c \\ 2\beta/\nu z & ; T = T_c \end{cases}$$

Interfaces

exponent value b=-2eta

models :

- (a) gaussian field $\mathcal{H}[\phi] = -\frac{1}{2} \int d\mathbf{r} (\nabla \phi)^2$ (b) Ising model $\mathcal{H}[\phi] = -\frac{1}{2} \int d\mathbf{r} [(\nabla \phi)^2 + \tau \phi^2 + \frac{g}{2} \phi^4]$ such that $\tau = 0 \leftrightarrow T = T_c$ dynamical Langevin equation (Ising) : (b) Kardar-Parisi-Zhang (KPZ) :
 - $\partial_t \phi = -D \frac{\delta \mathcal{H}[\phi]}{\delta \phi} + \eta \qquad \partial_t h = \nu \nabla^2 h + \frac{\mu}{2} (\nabla h)^2 + \eta$ $= D \nabla^2 \phi + \tau \phi + g \phi^3 + \eta$ $\eta(t, \mathbf{r}) \text{ is the usual white noise, } \langle \eta(t, \mathbf{r}) \eta(t', \mathbf{r}') \rangle = 2 T \delta(t t') \delta(\mathbf{r} \mathbf{r}')$
- phase transition exactly solved $\underline{d=2}$ growth exactly solved $\underline{d=1}$ relaxation exactly solved $\underline{d=1}$ CALABRESE & LE DOUSSAL '11

Question : obtain qualitative understanding by approximate treatment of the non-linearity?

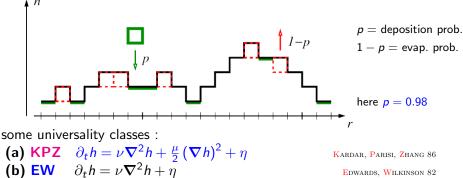
Ising model : yes, certainly \Rightarrow spherical model!

Berlin & Kac 52 Lewis & Wannier 52

(a) for a lattice model : replace Ising spins $s_i = \pm 1 \mapsto s_i \in \mathbb{R}$, with (mean) spherical constraint $\sum_i s_i^2 = \mathcal{N}$ (b) for continuum field : replace $\phi^3 \mapsto \phi \langle \phi^2 \rangle$ and spherical constraint $\int d\mathbf{r} \langle \phi^2 \rangle \sim 1$.

Interest : analytically solvable for any *d* and in more general contexts than Ising model, all exponents . . . known exactly. Very useful to illustrate general principles in a specific setting. New universality class, distinct from the Ising model (O(N) model with $N \rightarrow \infty$).

Question : can one find a similar treatment for the KPZ equation? Are there new universality class(es) for interface growth? Behaviour different from the rather trivial EW-equation? deposition (evaporation) of particles on a substrate \rightarrow height profile $h(t, \mathbf{r})$ generic situation : RSOS (restricted solid-on-solid) model KIM & KOSTERLITZ 89



 η is a gaussian white noise with $\langle \eta(t,{\bf r})\eta(t',{\bf r}')\rangle=2\nu\,T\delta(t-t')\delta({\bf r}-{\bf r}')$

Family-Viscek scaling on a spatial lattice of extent L^d : $\overline{h}(t) = L^{-d} \sum_j h_j(t)$ FAMILY & VISCEK 85

$$w^{2}(t;L) = \frac{1}{L^{d}} \sum_{j=1}^{L^{d}} \left\langle \left(h_{j}(t) - \overline{h}(t)\right)^{2} \right\rangle = L^{2\zeta} f\left(tL^{-z}\right) \sim \begin{cases} L^{2\zeta} & ; \text{ if } tL^{-z} \gg 1\\ t^{2\beta} & ; \text{ if } tL^{-z} \ll 1 \end{cases}$$

 β : growth exponent, ζ : roughness exponent, $|\zeta = \beta z|$

two-time correlator :

limit
$$L \to \infty$$

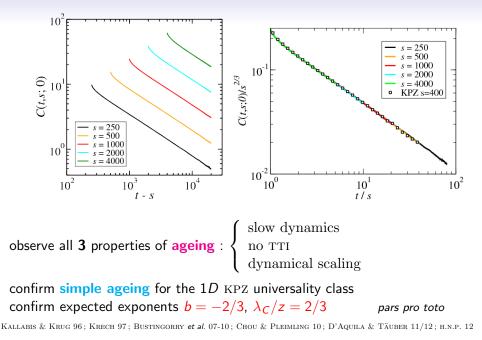
$$C(t,s;\mathbf{r}) = \left\langle \left(h(t,\mathbf{r}) - \left\langle \overline{h}(t) \right\rangle \right) \left(h(s,\mathbf{0}) - \left\langle \overline{h}(s) \right\rangle \right) \right\rangle = s^{-b} F_C \left(\frac{t}{s}, \frac{\mathbf{r}}{s^{1/z}} \right)$$

with ageing exponent : $b = -2\beta$

Kallabis & Krug 96

expect for $y = t/s \gg 1$: $F_C(y, \mathbf{0}) \sim y^{-\lambda_C/z}$ autocorrelation exponent

1D relaxation dynamics, starting from an initially flat interface



Values of some growth and ageing exponents in 1D

model	Z	а	Ь	$\lambda_R = \lambda_C$	β	ζ
KPZ	3/2	-1/3	-2/3	1	1/3	1/2
exp 1			$pprox -2/3^\dagger$	$pprox 1^{\dagger}$	0.336(11)	0.50(5)
exp 2	1.5(2)				0.32(4)	0.50(5)
EW	2	-1/2	-1/2	1	1/4	1/2

liquid crystals (cancer) cell growth

Takeuchi, Sano, Sasamoto, Spohn 10/11/12 Huergo, Pasquale, Gonzalez, Bolzan, Arvia 12 scaling holds only for flat interface

Two-time space-time responses and correlators consistent with simple ageing for $1D\ \rm KPZ$

Similar results known for EW universality class

ROETHLEIN, BAUMANN, PLEIMLING 06

3. Interface growth & (1st) Arcetri model ? $KPZ \rightarrow |intermediate model| \rightarrow EW$?

preferentially exactly solvable, and this in $d \ge 1$ dimensions

inspiration : mean spherical model of a ferromagnet

Berlin & Kac 52 Lewis & Wannier 52

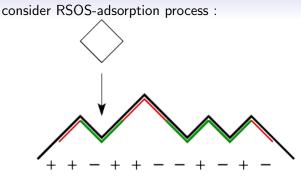
Ising spins $s_i = \pm 1$ obey $\sum_i s_i^2 = \mathcal{N} = \#$ sitesspherical spins $s_i \in \mathbb{R}$ spherical constraint $\langle \sum_i s_i^2 \rangle = \mathcal{N}$

hamiltonian $\mathcal{H} = -J \sum_{(i,j)} s_i s_j - \lambda \sum_i s_i^2$ Lagrange multiplier λ

exponents **non**-mean-field for 2 < d < 4 and $T_c > 0$ for d > 2

kineticsfrom Langevin equation $\partial_t \phi = -D \frac{\delta \mathcal{H}[\phi]}{\delta \phi} + \mathfrak{z}(t)\phi + \eta$ time-dependent Lagrange multiplier $\mathfrak{z}(t)$ fixed from spherical constraintall equilibrium and ageing exponents exactly known, for $T < T_c$ and $T = T_c$

Coniglio & Zannetti 89, ... Godrèche & Luck '00, Corberi, Lippiello, Fusco, Gonnella & Zannetti 02-14



use **not** the heights $h_n(t) \in \mathbb{N}$ on a discrete lattice,

but rather the slopes $u_n(t) = \frac{1}{2} (h_{n+1}(t) - h_{n-1}(t))$

? can one let $u_n(t) \in \mathbb{R}$, but impose a spherical constraint ?

since $u(t,x) = \partial_x h(t,x)$: go from KPZ to Burgers' equation, and replace its non-linearity by a mean spherical condition

$$\partial_{t} u_{n}(t) = \nu \left(u_{n+1}(t) + u_{n-1}(t) - 2u_{n}(t) \right) + \mathfrak{z}(t) u_{n}(t) \\ + \frac{1}{2} \left(\eta_{n+1}(t) - \eta_{n-1}(t) \right) \\ \sum_{n} \left\langle u_{n}(t)^{2} \right\rangle = N \qquad \langle \eta_{n}(t) \eta_{m}(s) \rangle = 2T \nu \delta(t-s) \delta_{n,m}$$

Extension to $d \ge 1$ dimensions : define gradient fields $u_a(t, \mathbf{r}) := \nabla_a h(t, \mathbf{r}), a = 1, \dots, d$:

$$\partial_t u_a(t,\mathbf{r}) = \nu \nabla_{\mathbf{r}} \cdot \nabla_{\mathbf{r}} u_a(t,\mathbf{r}) + \mathfrak{z}(t) u_a(t,\mathbf{r}) + \nabla_a \eta(t,\mathbf{r})$$
$$\sum_{a=1}^d \langle u_a(t,\mathbf{r})^2 \rangle = N^d$$

interface height : $\widehat{u}_{a}(t,\mathbf{q}) = \mathrm{i}\sin q_{a} \ \widehat{h}(t,\mathbf{q})$

; $\mathbf{q}
eq \mathbf{0}$ in Fourier space

$$\widehat{h}(t,\mathbf{q}) = \widehat{h}(0,\mathbf{q})e^{-2t\omega(\mathbf{q})}g(t)^{-1/2} + \int_0^t \mathrm{d}\tau \ \widehat{\eta}(\tau,\mathbf{q})\sqrt{\frac{g(\tau)}{g(t)}} e^{-2(t-\tau)\omega(\mathbf{q})}$$

in terms of the auxiliary function $g(t) = \exp\left(-2\int_0^t d\tau \,\mathfrak{z}(\tau)\right)$, satisfies Volterra equation

$$g(t) = f(t) + 2T \int_0^t d\tau g(\tau) f(t-\tau) \ , \ f(t) := d \frac{e^{-4t} I_1(4t)}{4t} \left(e^{-4t} I_0(4t) \right)^{d-1}$$

- * for d = 1, identical to 'spherical spin glass', with $T = 2T_{SG}$: hamiltonian $\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} s_i s_j$; J_{ij} random matrix, its eigenvalues distributed according to Wigner's semi-circle law * correspondence spherical spins $s_i \leftrightarrow \text{slopes } u_n$
 - * kinetics of heights $h_n(t)$ is driven by phase-ordering of the spherical spin glass = 3D kinetic spherical model

phase transition : long-range correlated surface growth for $\mathcal{T} \leq \mathcal{T}_c$

$$\frac{1}{T_c(d)} = \frac{d}{2} \int_0^\infty dt \ e^{-dt} t^{-1} I_1(t) I_0(t)^{d-1} \quad ; \quad T_c(1) = 2, \ T_c(2) = \frac{\pi}{\pi - 2}$$

Some results : <u>1. $T = T_c$, d < 2</u>: sub-diffusive interface motion $\langle h(t) \rangle \sim t^{(2-d)/4}$ interface width $w(t) = t^{(2-d)/4} \Longrightarrow \beta = \frac{2-d}{4}$ ageing exponents $a = b = \frac{d}{2} - 1$, $\lambda_R = \lambda_C = \frac{3d}{2} - 1$; z = 2

2. $T = T_c$, d > 2: interface immobile $\langle h(t) \rangle \sim \text{cste.}$ interface width $w(t) = \text{cste.} \implies \beta = 0$ ageing exponents $a = b = \frac{d}{2} - 1$, $\lambda_R = \lambda_C = d$; z = 2

 $\begin{array}{l} \underline{3. \ T < T_c:} \\ \hline \text{interface width } w^2(t) = (1 - T/T_c)t \Longrightarrow \beta = \frac{1}{2} \\ \text{ageing exponents } a = \frac{d}{2} - 1, \ b = -1, \ \lambda_R = \lambda_C = \frac{d-2}{2}; \ z = 2 \end{array}$

4. Conclusions

- physical ageing occurs naturally in many irreversible systems relaxing towards generic stationary states considered here : magnetic systems & surface growth
- quite analogous scaling phenomenologies
- 1st Arcetri model captures at least some qualitative properites of KPZ. Specific properties :
 - interface becomes more smooth as $d \to d^* = 2$; for d > 2 the EW equation gives the mean-field description
 - at $T = T_c$, the stationary exponents (β, z) are those of EW, but the ageing exponents are different confirms explicitly general field-theory renormalisation group
 - for d = 1 and $T = T_c$, equivalent to p = 2 spherical spin glass
 - new kind of behaviour at $T < T_c$
- in progress : classify all possible 'spherical/Arcetri models' and study their properties