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1. Magnets and growing interfaces : analogies

Common properties of critical and ageing phenomena :

* collective behaviour,
very large number of interacting degrees of freedom

* algebraic large-distance and/or large-time behaviour
* described in terms of universal critical exponents
* very few relevant scaling operators
* justifies use of extremely simplified mathematical models

with a remarkably rich and complex behaviour

* yet of experimental significance



Magnets
thermodynamic equilibrium state
order parameter φ(t, r)
phase transition, at critical temperature Tc :
magnetisation :
m(t) = 〈φ(t, r)〉|T=Tc

∼ t−β/(νz)

relaxation, after quench to T ≤ Tc

autocorrelator
C (t, s) = 〈φ(t, r)φ(s, r)〉c

Interfaces
growth continues forever
height profile h(t, r)
same generic behaviour throughout

roughness :

w(t)2 = 〈
(
h(t, r)− h(t)

)2〉 ∼ t2β

relaxation, from initial substrate :
autocorrelator C (t, s) =〈(
h(t, r)− h(t)

) (
h(s, r)− h(s)

)〉
ageing scaling behaviour :

when t, s →∞, and y := t/s > 1 fixed, expect

C (t, s) = s−bfC (t/s) and fC (y)
y→∞∼ y−λC/z

b, β, ν and dynamical exponent z : universal & related to stationary state

autocorrelation exponent λC : universal & independent of stationary exponents



Magnets
exponent value b =

{
0 ; T < Tc
2β/νz ; T = Tc

Interfaces
exponent value b = −2β

models :

(a) gaussian field
H[φ] = −1

2

∫
dr (∇φ)2

(b) Ising model
H[φ] = −1

2

∫
dr
[
(∇φ)2 + τφ2 + g

2φ
4
]

such that τ = 0↔ T = Tc

dynamical Langevin equation (Ising) :

∂tφ = −D δH[φ]

δφ
+ η

= D∇2φ+ τφ+ gφ3 + η

(a) Edwards-Wilkinson (ew) :
∂th = ν∇2h + η

(b) Kardar-Parisi-Zhang (kpz) :

∂th = ν∇2h + µ
2 (∇h)2 + η

η(t, r) is the usual white noise, 〈η(t, r)η(t′, r′)〉 = 2Tδ(t − t′)δ(r − r′)

phase transition exactly solved d = 2
relaxation exactly solved d = 1

Onsager ’44, Glauber ’63, . . .

growth exactly solved d = 1
Calabrese & Le Doussal ’11

Sasamoto & Spohn ’10



Question : obtain qualitative understanding by approximate treatment
of the non-linearity ?

Ising model : yes, certainly ! ⇒ spherical model ! Berlin & Kac 52
Lewis & Wannier 52

(a) for a lattice model : replace Ising spins si = ±1 7→ si ∈ R, with
(mean) spherical constraint

∑
i s

2
i = N

(b) for continuum field : replace φ3 7→ φ〈φ2〉 and spherical
constraint

∫
dr〈φ2〉 ∼ 1.

Interest : analytically solvable for any d and in more general contexts
than Ising model, all exponents . . . known exactly. Very useful to
illustrate general principles in a specific setting. New universality
class, distinct from the Ising model (O(N) model with N →∞).

Question : can one find a similar treatment for the kpz equation ?

Are there new universality class(es) for interface growth ?
Behaviour different from the rather trivial ew-equation ?



2. Interface growth & kpz class

deposition (evaporation) of particles on a substrate → height profile h(t, r)
generic situation : RSOS (restricted solid-on-solid) model Kim & Kosterlitz 89

p = deposition prob.

1− p = evap. prob.

here p = 0.98

some universality classes :
(a) KPZ ∂th = ν∇2h + µ

2 (∇h)2 + η Kardar, Parisi, Zhang 86

(b) EW ∂th = ν∇2h + η Edwards, Wilkinson 82

η is a gaussian white noise with 〈η(t, r)η(t ′, r′)〉 = 2νT δ(t − t ′)δ(r − r′)



Family-Viscek scaling on a spatial lattice of extent Ld : h(t) = L−d
∑

j hj(t)

Family & Viscek 85

w2(t; L) =
1

Ld

Ld∑
j=1

〈(
hj(t)− h(t)

)2
〉

= L2ζ f
(
tL−z

)
∼
{

L2ζ ; if tL−z � 1
t2β ; if tL−z � 1

β : growth exponent, ζ : roughness exponent, ζ = βz

two-time correlator : limit L → ∞

C (t, s; r) =
〈(
h(t, r)−

〈
h(t)

〉) (
h(s, 0)−

〈
h(s)

〉)〉
= s−bFC

( t
s
,

r

s1/z

)
with ageing exponent : b = −2β Kallabis & Krug 96

expect for y = t/s � 1 : FC (y , 0) ∼ y−λC/z autocorrelation exponent



1D relaxation dynamics, starting from an initially flat interface

observe all 3 properties of ageing :


slow dynamics
no tti
dynamical scaling

confirm simple ageing for the 1D kpz universality class
confirm expected exponents b = −2/3, λC/z = 2/3 pars pro toto

Kallabis & Krug 96 ; Krech 97 ; Bustingorry et al. 07-10 ; Chou & Pleimling 10 ; D’Aquila & Täuber 11/12 ; h.n.p. 12



Values of some growth and ageing exponents in 1D

model z a b λR = λC β ζ

kpz 3/2 −1/3 −2/3 1 1/3 1/2
exp 1 ≈ −2/3† ≈ 1† 0.336(11) 0.50(5)
exp 2 1.5(2) 0.32(4) 0.50(5)

ew 2 −1/2 −1/2 1 1/4 1/2

liquid crystals Takeuchi, Sano, Sasamoto, Spohn 10/11/12

(cancer) cell growth Huergo, Pasquale, Gonzalez, Bolzan, Arvia 12

† scaling holds only for flat interface

Two-time space-time responses and correlators consistent with
simple ageing for 1D kpz

Similar results known for ew universality class
Roethlein, Baumann, Pleimling 06



3. Interface growth & (1st) Arcetri model
? kpz −→ intermediate model −→ ew ?

preferentially exactly solvable, and this in d ≥ 1 dimensions

inspiration : mean spherical model of a ferromagnet Berlin & Kac 52
Lewis & Wannier 52

Ising spins si = ±1 obey
∑

i s
2
i = N = # sites

spherical spins si ∈ R spherical constraint
〈∑

i s
2
i

〉
= N

hamiltonian H = −J
∑

(i,j) si sj − λ
∑

i s
2
i Lagrange multiplier λ

exponents non-mean-field for 2 < d < 4 and Tc > 0 for d > 2

kinetics from Langevin equation ∂tφ = −D δH[φ]
δφ + z(t)φ+ η

time-dependent Lagrange multiplier z(t) fixed from spherical constraint
all equilibrium and ageing exponents exactly known, for T < Tc and T = Tc

Coniglio & Zannetti 89, . . . Godrèche & Luck ’00, Corberi, Lippiello, Fusco, Gonnella & Zannetti 02-14

. . .



consider RSOS-adsorption process :

use not the heights hn(t) ∈ N on a discrete lattice,

but rather the slopes un(t) = 1
2 (hn+1(t)− hn−1(t))

? can one let un(t) ∈ R, but impose a spherical constraint ?

? consequences of the ‘hardening’ of a soft ew-interface by a ‘spherical
constraint’ on the un ?



since u(t, x) = ∂xh(t, x) : go from kpz to Burgers’ equation, and
replace its non-linearity by a mean spherical condition

∂tun(t) = ν (un+1(t) + un−1(t)− 2un(t)) + z(t)un(t)

+
1

2
(ηn+1(t)− ηn−1(t))∑

n

〈
un(t)2

〉
= N 〈ηn(t)ηm(s)〉 = 2Tνδ(t − s)δn,m

Extension to d ≥ 1 dimensions :
define gradient fields ua(t, r) := ∇ah(t, r), a = 1, . . . , d :

∂tua(t, r) = ν∇r · ∇rua(t, r) + z(t)ua(t, r) +∇aη(t, r)
d∑

a=1

〈
ua(t, r)2

〉
= Nd

interface height : ûa(t,q) = i sin qa ĥ(t,q) ; q 6= 0 in Fourier space



exact solution : q 6= 0

ĥ(t,q) = ĥ(0,q)e−2tω(q)g(t)−1/2+

∫ t

0
dτ η̂(τ,q)

√
g(τ)

g(t)
e−2(t−τ)ω(q)

in terms of the auxiliary function g(t) = exp
(
−2
∫ t

0 dτ z(τ)
)

,

satisfies Volterra equation

g(t) = f (t)+2T

∫ t

0
dτg(τ)f (t−τ) , f (t) := d

e−4t I1(4t)

4t

(
e−4t I0(4t)

)d−1

* for d = 1, identical to ‘spherical spin glass’, with T = 2TSG :
hamiltonian H = −1

2

∑
i ,j Jijsi sj ; Jij random matrix, its eigenvalues

distributed according to Wigner’s semi-circle law Cugliandolo & Dean 95

* correspondence spherical spins si ↔ slopes un
* kinetics of heights hn(t) is driven by phase-ordering of the spherical

spin glass = 3D kinetic spherical model



phase transition : long-range correlated surface growth for T ≤ Tc

1

Tc(d)
=

d

2

∫ ∞
0

dt e−dtt−1I1(t)I0(t)d−1 ; Tc(1) = 2,Tc(2) =
π

π − 2

Some results : upper critical dimension d∗ = 2

1. T = Tc , d < 2 : sub-diffusive interface motion 〈h(t)〉 ∼ t(2−d)/4

interface width w(t) = t(2−d)/4 =⇒ β = 2−d
4

ageing exponents a = b = d
2 − 1, λR = λC = 3d

2 − 1 ; z = 2

2. T = Tc , d > 2 : interface immobile 〈h(t)〉 ∼ cste.
interface width w(t) = cste. =⇒ β = 0
ageing exponents a = b = d

2 − 1, λR = λC = d ; z = 2

3. T < Tc :
interface width w2(t) = (1− T/Tc)t =⇒ β = 1

2

ageing exponents a = d
2 − 1, b = −1, λR = λC = d−2

2 ; z = 2



4. Conclusions

physical ageing occurs naturally in many irreversible systems
relaxing towards generic stationary states
considered here : magnetic systems & surface growth

quite analogous scaling phenomenologies

1st Arcetri model captures at least some qualitative
properites of kpz. Specific properties :

interface becomes more smooth as d → d∗ = 2 ; for d > 2 the
ew equation gives the mean-field description
at T = Tc , the stationary exponents (β, z) are those of ew,
but the ageing exponents are different
confirms explicitly general field-theory renormalisation group
for d = 1 and T = Tc , equivalent to p = 2 spherical spin glass
new kind of behaviour at T < Tc

in progress : classify all possible ‘spherical/Arcetri models’ and
study their properties


