Universality in the d = 3 random-field Ising model

Nikolaos G. Fytas

Applied Mathematics Research Centre, Coventry University, United Kingdom

November 28, 2014

• The random-field Ising model (RFIM) is a long-standing problem of Statistical Mechanics (\approx 1700 papers in the years 1970 - 2012: source ISI WEB).

- The random-field Ising model (RFIM) is a long-standing problem of Statistical Mechanics (\approx 1700 papers in the years 1970 2012: source ISI WEB).
- Unusual RG: fixed point at zero temperature (T = 0) leading to hyper-scaling violations (exponent θ).

- The random-field Ising model (RFIM) is a long-standing problem of Statistical Mechanics (\approx 1700 papers in the years 1970 2012: source ISI WEB).
- Unusual RG: fixed point at zero temperature (T = 0) leading to hyper-scaling violations (exponent θ).
- Some cherished concepts, i.e. the two-exponent scaling scenario ($\bar{\eta} = 2\eta$), have been recently questioned (Tissier and Tarjus, PRL **107**, 041601 (2011)).

- The random-field Ising model (RFIM) is a long-standing problem of Statistical Mechanics (\approx 1700 papers in the years 1970 2012: source ISI WEB).
- Unusual RG: fixed point at zero temperature (T = 0) leading to hyper-scaling violations (exponent θ).
- Some cherished concepts, i.e. the two-exponent scaling scenario ($\bar{\eta} = 2\eta$), have been recently questioned (Tissier and Tarjus, PRL **107**, 041601 (2011)).
- Universality in terms of different field distributions, or even for the same distribution but different values of the disorder strength, has been severely questioned.

Ingredients (I): Hamiltonian and the T = 0 scenario

Ingredients (I): Hamiltonian and the T = 0 scenario

$$\mathcal{H}^{(\mathrm{RFIM})} = -J\sum_{\langle x,y
angle} S_xS_y - \sum_x h_xS_x, \ ; \ S_x = \pm 1 \ ; \ J>0$$

Ingredients (I): Hamiltonian and the T = 0 scenario

$$\mathcal{H}^{(\mathrm{RFIM})} = -J\sum_{\langle x,y\rangle}S_xS_y - \sum_xh_xS_x, \ ; \ S_x = \pm 1 \ ; \ J>0$$

 Work at T = 0 using efficient optimization algorithms that calculate exact ground states. Avoid statistical errors and equilibration problems.

$$\mathcal{W}^{(dG)}(h_x;h_R,\sigma) = \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} \left[e^{-\frac{(h_x-h_R)^2}{2\sigma^2}} + e^{-\frac{(h_x+h_R)^2}{2\sigma^2}} \right]$$

$$\mathcal{W}^{(dG)}(h_x; h_R, \sigma) = \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} \left[e^{-\frac{(h_x - h_R)^2}{2\sigma^2}} + e^{-\frac{(h_x + h_R)^2}{2\sigma^2}} \right]$$

• bimodal (b):
$$\sigma
ightarrow 0$$

• double Gaussian (dG):

$$\mathcal{W}^{(dG)}(h_x; h_R, \sigma) = \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} \left[e^{-\frac{(h_x - h_R)^2}{2\sigma^2}} + e^{-\frac{(h_x + h_R)^2}{2\sigma^2}} \right]$$

• bimodal (b):
$$\sigma \rightarrow 0$$

• Gaussian (G): $h_R = 0$

$$\mathcal{W}^{(dG)}(h_x; h_R, \sigma) = \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} \left[e^{-\frac{(h_x - h_R)^2}{2\sigma^2}} + e^{-\frac{(h_x + h_R)^2}{2\sigma^2}}
ight]$$

• bimodal (b):
$$\sigma \rightarrow 0$$

- Gaussian (G): $h_R = 0$
- $\mathrm{dG}^{(\sigma=1)}$: bimodal like continuous distribution

$$\mathcal{W}^{(dG)}(h_x; h_R, \sigma) = \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} \left[e^{-\frac{(h_x - h_R)^2}{2\sigma^2}} + e^{-\frac{(h_x + h_R)^2}{2\sigma^2}}
ight]$$

•
$$dG^{(\sigma=2)}$$

$$\mathcal{W}^{(dG)}(h_x; h_R, \sigma) = \frac{1}{2} \frac{1}{\sqrt{2\pi\sigma^2}} \left[e^{-\frac{(h_x - h_R)^2}{2\sigma^2}} + e^{-\frac{(h_x + h_R)^2}{2\sigma^2}} \right]$$

•
$$dG^{(\sigma=2)}$$

• Poissonian (P): $W^{(P)}(h_x; \sigma) = \frac{1}{2|\sigma|}e^{-|h_x|/\sigma}$

Ingredients (III): Computational scheme

Ingredients (III): Computational scheme

• Fluctuation-dissipation formalism: Compute connected $G_{xy} = \overline{\frac{\partial \langle S_x \rangle}{\partial h_y}}$ and disconnected $G_{xy}^{\text{dis}} = \overline{\langle S_x S_y \rangle}$ correlations functions. For either correlator \rightarrow second-moment correlation length.

Ingredients (III): Computational scheme

- Fluctuation-dissipation formalism: Compute connected $G_{xy} = \overline{\frac{\partial \langle S_x \rangle}{\partial h_y}}$ and disconnected $G_{xy}^{\text{dis}} = \overline{\langle S_x S_y \rangle}$ correlations functions. For either correlator \rightarrow second-moment correlation length.
- **Re-weighting extrapolation** on h_R and σ : From a single simulation, we extrapolate the mean value of observables to nearby parameters of the disorder distribution. Computing derivatives with respect to σ or h_R is straightforward.

Ingredients (IV): Scaling scheme

Ingredients (IV): Scaling scheme

Quotient method: We compare observables computed in pairs (L, 2L). Scale-invariance is imposed by seeking the *L*-dependent critical point: the value of h_R or σ , such that $\xi_{2L}/\xi_L = 2$.

Ingredients (IV): Scaling scheme

Quotient method: We compare observables computed in pairs (L, 2L). Scale-invariance is imposed by seeking the *L*-dependent critical point: the value of h_R or σ , such that $\xi_{2L}/\xi_L = 2$.

• For dimensionful quantities O, scaling in the thermodynamic limit as $\xi^{x_O/\nu}$, we consider the quotient $Q_O = O_{2L}/O_L$ at the crossing. For dimensionless magnitudes g, we focus on g_{2L} . In either case, one has:

$$Q_O^{\text{cross}} = 2^{x_O/\nu} + \mathcal{O}(L^{-\omega}), \ g_{(2L)}^{\text{cross}} = g^* + \mathcal{O}(L^{-\omega}),$$

where x_O/ν , g^* and the scaling-corrections exponent ω are universal.

• For dimensionful quantities O, scaling in the thermodynamic limit as $\xi^{x_O/\nu}$, we consider the quotient $Q_O = O_{2L}/O_L$ at the crossing. For dimensionless magnitudes g, we focus on g_{2L} . In either case, one has:

$$Q_O^{\text{cross}} = 2^{x_O/\nu} + \mathcal{O}(L^{-\omega}), \ g_{(2L)}^{\text{cross}} = g^* + \mathcal{O}(L^{-\omega}),$$

where x_O/ν , g^* and the scaling-corrections exponent ω are universal.

• Examples of dimensionless quantities are ξ/L , $\xi^{(\text{dis})}/L$ and $U_4 = \overline{\langle m^4 \rangle} / \overline{\langle m^2 \rangle}^2$.

• For dimensionful quantities O, scaling in the thermodynamic limit as $\xi^{x_O/\nu}$, we consider the quotient $Q_O = O_{2L}/O_L$ at the crossing. For dimensionless magnitudes g, we focus on g_{2L} . In either case, one has:

$$Q_O^{\text{cross}} = 2^{x_O/\nu} + \mathcal{O}(L^{-\omega}), \ g_{(2L)}^{\text{cross}} = g^* + \mathcal{O}(L^{-\omega}),$$

where x_O/ν , g^* and the scaling-corrections exponent ω are universal.

- Examples of dimensionless quantities are ξ/L , $\xi^{(\text{dis})}/L$ and $U_4 = \overline{\langle m^4 \rangle} / \overline{\langle m^2 \rangle}^2$.
- Instances of dimensionful quantities are the derivatives of ξ , $\xi^{(\text{dis})} (x_{\xi} = 1 + \nu)$, the connected and disconnected susceptibilities χ and $\chi^{(\text{dis})} [x_{\chi} = \nu(2 - \eta), x_{\chi^{(\text{dis})}} = \nu(4 - \bar{\eta})]$, and the ratio $U_{22} = \chi^{(\text{dis})}/\chi^2 [x_{U_{22}} = \nu(2\eta - \bar{\eta})]$.

Huge statistics: $L_{max} = 192$ and 5×10^7 samples.

Huge statistics: $L_{max} = 192$ and 5×10^7 samples.

Huge statistics: $L_{\rm max} = 192$ and 5×10^7 samples.

One needs extrapolation to $L \to \infty$.

Universality in the d = 3 RFIM

 $A + BL^{-\omega} + CL^{-2\omega} + DL^{-3\omega}$; $L_{min} = 24$; $\omega = 0.52 \pm 0.11$; $\chi^2/dof = 18.83/14$, Q = 0.17 (full covariance-matrix!)

Universality in the d = 3 RFIM

 $A + BL^{-\omega} + CL^{-2\omega} + DL^{-3\omega}$; $L_{min} = 24$; $\omega = 0.52 \pm 0.11$; $\chi^2/dof = 18.83/14$, Q = 0.17 (full covariance-matrix!)

Nikolaos G. Fytas Leipzig 28/11/2014

Extrapolation of ν

$$u_L = \nu + BL^{-\omega}$$
; $L_{min} = 32$; $\omega = 0.52$;
 $\chi^2/dof = 12.52/10, Q = 0.25$
Final estimate: $\nu = 1.38 \pm 0.10$

Extrapolation of η

 $\eta_L=\eta+BL^{-\omega}$; $L_{min}=32$; $\omega=0.52$; $\chi^2/dof=10/9,~Q=0.35$ Final estimate: $\eta=0.5153\pm0.0009$

Extrapolation of $2\eta - \bar{\eta}$

$$(2\eta - \bar{\eta})|_L = BL^{-\omega}$$
; $L_{min} = 16$; $\omega = 0.52$; $\chi^2/dof = 18.26/18$, $Q = 0.44$

Extrapolation	χ^2/DOF	L_{\min}	Order in $L^{-\omega}$
$(\xi/L) _{L=\infty} = 2.08(13)$	18.8/14	24	third
$(\xi^{(\text{dis})}/L) _{L=\infty} = 8.4(8)$			
$U_4 _{L=\infty} = 1.0011(18)$			
$\omega = 0.52(11)$			
$\nu _{L=\infty} = 1.38(10)(0.03)$	12.5/10	32	first
$\eta _{L=\infty} = 0.5153(9)(2)$	10.0/9	32	first
$(2\eta - \bar{\eta}) _{L=\infty} = 0$ (fixed)	18.3/18	16	first
$(2\eta - \bar{\eta}) _{L=\infty} = 0.0026(9)(1)$	10.5/17	16	first
$\sigma^{c}[G] = 2.27205(18)(4)$	3.1/3	16	second
$h_R^c[dG^{(\sigma=1)}] = 1.9955(6)(24)$	2.5/1	24	second
$h_R^c[dG^{(\sigma=2)}] = 1.0631(7)(10)$	0.7/2	16	second
$\sigma^{c}[P] = 1.7583(2)(2)$	3.0/3	16	second

Conclusions

• The phase diagram of the RFIM is seemingly ruled by a **single fixed point**:

• The phase diagram of the RFIM is seemingly ruled by a **single fixed point**:

• Existence of strong scaling corrections that need to be carefully monitored. Very accurate computation of anomalous dimensions η , $\bar{\eta}$.

• The phase diagram of the RFIM is seemingly ruled by a **single fixed point**:

- Existence of strong scaling corrections that need to be carefully monitored. Very accurate computation of anomalous dimensions η , $\bar{\eta}$.
- The **two-exponent scaling scenario holds** within an accuracy of two parts in a thousand (2/1000).

Acknowledgements

• Víctor Martín-Mayor for offering me a research position in Madrid where this project has evolved and for his continuous collaboration.

- Víctor Martín-Mayor for offering me a research position in Madrid where this project has evolved and for his continuous collaboration.
- Luis-Antonio Fernández for extremely valuable help on the use of super-computing resources in Spain.

- Víctor Martín-Mayor for offering me a research position in Madrid where this project has evolved and for his continuous collaboration.
- Luis-Antonio Fernández for extremely valuable help on the use of super-computing resources in Spain.
- Computational time in the clusters *Terminus* and *Memento* (BIFI Institute Zaragoza) and the local cluster of the Department of Physics at the Universidad Complutense de Madrid.

 Investigate scaling corrections - the Achilles' heel in the study of the RFIM - and universality aspects in higher dimensions. Work in progress with Víctor Martín-Mayor, Marco Picco and Nicolas Sourlas.

- Investigate scaling corrections the Achilles' heel in the study of the RFIM - and universality aspects in higher dimensions. Work in progress with Víctor Martín-Mayor, Marco Picco and Nicolas Sourlas.
- Royal Society Research Grant in collaboration with Martin Weigel: "Simulating dirty magnets on GPUs".

Our "scientific" life in the AMRC

