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Introduction

The random-field Ising model (RFIM) is a long-standing
problem of Statistical Mechanics (≈ 1700 papers in the years
1970 - 2012: source ISI WEB).

Unusual RG: fixed point at zero temperature (T = 0) leading
to hyper-scaling violations (exponent θ).

Some cherished concepts, i.e. the two-exponent scaling
scenario (η̄ = 2η), have been recently questioned (Tissier and
Tarjus, PRL 107, 041601 (2011)).

Universality in terms of different field distributions, or even for
the same distribution but different values of the disorder
strength, has been severely questioned.
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Ingredients (I): Hamiltonian and the T = 0 scenario

H(RFIM) = −J
∑
〈x ,y〉

SxSy −
∑
x

hxSx , ; Sx = ±1 ; J > 0

Work at T = 0 using efficient optimization algorithms that
calculate exact ground states. Avoid statistical errors and
equilibration problems.
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Ingredients (II): Simulated continuous field distributions

double Gaussian (dG):

W(dG)(hx ; hR , σ) = 1
2

1√
2πσ2

[
e−

(hx−hR )2

2σ2 + e−
(hx+hR )2

2σ2

]
bimodal (b): σ → 0
Gaussian (G): hR = 0

dG(σ=1): bimodal - like continuous distribution
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Poissonian (P): W(P)(hx ;σ) = 1
2|σ|e

−|hx |/σ
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Ingredients (III): Computational scheme

Fluctuation-dissipation formalism: Compute connected

Gxy = ∂〈Sx 〉
∂hy

and disconnected Gdis
xy = 〈SxSy 〉 correlations

functions. For either correlator → second-moment correlation
length.

Re-weighting extrapolation on hR and σ: From a single
simulation, we extrapolate the mean value of observables to
nearby parameters of the disorder distribution. Computing
derivatives with respect to σ or hR is straightforward.
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Ingredients (IV): Scaling scheme

Quotient method: We compare observables computed in pairs
(L, 2L). Scale-invariance is imposed by seeking the L-dependent
critical point: the value of hR or σ, such that ξ2L/ξL = 2.
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Figure : Crossings of the universal ratio ξ/L from Gxy .
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For dimensionful quantities O, scaling in the thermodynamic
limit as ξxO/ν , we consider the quotient QO = O2L/OL at the
crossing. For dimensionless magnitudes g , we focus on g2L. In
either case, one has:

Qcross
O = 2xO/ν +O(L−ω) , g cross

(2L) = g∗ +O(L−ω) ,

where xO/ν, g∗ and the scaling-corrections exponent ω are
universal.

Examples of dimensionless quantities are ξ/L, ξ(dis)/L and

U4 = 〈m4〉/〈m2〉2.

Instances of dimensionful quantities are the derivatives of ξ,
ξ(dis) (xξ = 1 + ν), the connected and disconnected
susceptibilities χ and χ(dis) [xχ = ν(2− η), xχ(dis) = ν(4− η̄)],

and the ratio U22 = χ(dis)/χ2 [xU22 = ν(2η − η̄)].
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First flavor of universality: Mind the scaling corrections!

Huge statistics: Lmax = 192 and 5× 107 samples.
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One needs extrapolation to L→∞.
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Universality in the d = 3 RFIM

A + BL−ω + CL−2ω + DL−3ω ; Lmin = 24 ; ω = 0.52± 0.11 ;
χ2/dof = 18.83/14, Q = 0.17 (full covariance-matrix!)
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Extrapolation of ν

νL = ν + BL−ω ; Lmin = 32 ; ω = 0.52 ;
χ2/dof = 12.52/10, Q = 0.25
Final estimate: ν = 1.38± 0.10
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Extrapolation of η

ηL = η + BL−ω ; Lmin = 32 ; ω = 0.52 ; χ2/dof = 10/9, Q = 0.35
Final estimate: η = 0.5153± 0.0009
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Extrapolation of 2η − η̄

(2η − η̄)|L = BL−ω ; Lmin = 16 ; ω = 0.52 ;
χ2/dof = 18.26/18, Q = 0.44
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Summary of universal ratios and exponents
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Conclusions

The phase diagram of the RFIM is seemingly ruled by a single
fixed point:
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Existence of strong scaling corrections that need to be
carefully monitored. Very accurate computation of anomalous
dimensions η, η̄.

The two-exponent scaling scenario holds within an
accuracy of two parts in a thousand (2/1000).

Nikolaos G. Fytas Leipzig 28/11/2014



Conclusions

The phase diagram of the RFIM is seemingly ruled by a single
fixed point:

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

dG (  = 2)

dG (  = 1)

G

 

 

h R

b

Existence of strong scaling corrections that need to be
carefully monitored. Very accurate computation of anomalous
dimensions η, η̄.

The two-exponent scaling scenario holds within an
accuracy of two parts in a thousand (2/1000).

Nikolaos G. Fytas Leipzig 28/11/2014



Conclusions

The phase diagram of the RFIM is seemingly ruled by a single
fixed point:

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

dG (  = 2)

dG (  = 1)

G

 

 

h R

b

Existence of strong scaling corrections that need to be
carefully monitored. Very accurate computation of anomalous
dimensions η, η̄.

The two-exponent scaling scenario holds within an
accuracy of two parts in a thousand (2/1000).

Nikolaos G. Fytas Leipzig 28/11/2014



Conclusions

The phase diagram of the RFIM is seemingly ruled by a single
fixed point:

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

dG (  = 2)

dG (  = 1)

G

 

 

h R

b

Existence of strong scaling corrections that need to be
carefully monitored. Very accurate computation of anomalous
dimensions η, η̄.

The two-exponent scaling scenario holds within an
accuracy of two parts in a thousand (2/1000).

Nikolaos G. Fytas Leipzig 28/11/2014



Acknowledgements

V́ıctor Mart́ın-Mayor for offering me a research position in
Madrid where this project has evolved and for his continuous
collaboration.

Luis-Antonio Fernández for extremely valuable help on the use
of super-computing resources in Spain.

Computational time in the clusters Terminus and Memento
(BIFI Institute Zaragoza) and the local cluster of the
Department of Physics at the Universidad Complutense de
Madrid.

Nikolaos G. Fytas Leipzig 28/11/2014



Acknowledgements

V́ıctor Mart́ın-Mayor for offering me a research position in
Madrid where this project has evolved and for his continuous
collaboration.

Luis-Antonio Fernández for extremely valuable help on the use
of super-computing resources in Spain.

Computational time in the clusters Terminus and Memento
(BIFI Institute Zaragoza) and the local cluster of the
Department of Physics at the Universidad Complutense de
Madrid.

Nikolaos G. Fytas Leipzig 28/11/2014



Acknowledgements

V́ıctor Mart́ın-Mayor for offering me a research position in
Madrid where this project has evolved and for his continuous
collaboration.

Luis-Antonio Fernández for extremely valuable help on the use
of super-computing resources in Spain.

Computational time in the clusters Terminus and Memento
(BIFI Institute Zaragoza) and the local cluster of the
Department of Physics at the Universidad Complutense de
Madrid.

Nikolaos G. Fytas Leipzig 28/11/2014



Acknowledgements

V́ıctor Mart́ın-Mayor for offering me a research position in
Madrid where this project has evolved and for his continuous
collaboration.

Luis-Antonio Fernández for extremely valuable help on the use
of super-computing resources in Spain.

Computational time in the clusters Terminus and Memento
(BIFI Institute Zaragoza) and the local cluster of the
Department of Physics at the Universidad Complutense de
Madrid.

Nikolaos G. Fytas Leipzig 28/11/2014



Future work in this direction

Investigate scaling corrections - the Achilles’ heel in the
study of the RFIM - and universality aspects in higher
dimensions. Work in progress with V́ıctor Mart́ın-Mayor,
Marco Picco and Nicolas Sourlas.

Royal Society Research Grant in collaboration with Martin
Weigel: “Simulating dirty magnets on GPUs”.
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