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1.
2.

Random Walks (RWs) Self-Avoiding Walks (SAWSs)

End-to-end distance: (R?) ~ N2
Universal size exponent v:

1 3

RW = 5 VSAW = d+2
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Definitions: Gyration tensor

@ Position vectors R, = {Xa, yn} ,

(n=1,....N),
@ Center of mass Rgy with
N N

Xem = —E”,Tf ™, Yom = =t

@ Gyration tensor

N
1
Qv =§ > (X0 — Xem)(Vn — Yom)

@ Eigenvalues \; measures the shape
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Definitions: Gyration tensor

’\1:)\2 AMF0, N=0
A=0 DA< )
Random walk trajectories are asymmetrical (w Kuhn (1934); K. Solc and W.H. Stockmayer(1971)) J
0 . . a-a d X 2 Jd Tr@?
Rotational invarint: Asphericity A = d( 2 = a1 (1rQ)?
1 d 1 A
with X = N z A= NTI‘Q, Q = Q — TrQl (A Aronovitz and DR, Neison, J. Physique 47 1445 (1986).)

i=1
@ Random walk: Agw(d = 2) = 0.392 £+ 0.005 (J. Rudnick and G. Gaspari, J. Phys. A19, L191 (1986))
(] Self-avoiding walk: ASAW(d = 2) = 0.501 +0.003 (M. Bishop and C.J. Saltiel, J. Chem. Phys.

88 ( 1988))
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Random-walks in disordered environment

o @ _sijte with defect
@ p — concentration of disorder
@ uncorrelated point-like deffects:

universal size and shape characteristics
are not altered unless p > p.
( Y. Kim, J. Phys. C 16, 1345 (1983);
S. B. Lee and H. Nakanishi, Phys. Rev. Lett. 61, 2022 (1988). )
@ p. - percolation threshold
@ p.(d=2)=0.407

( R.M. Ziff, Phys. Rev. Lett. 72, 1942 (1942). )
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Long-range correlated disorder

@ Defects are correlated on large distances r according to a power law with
a pair correlation function
C(r)y~r—2

(A. Weinrib and B.1. Halperin, Phys. Rev. B27, 413 ( 1983))
@ a= d - uncorrelated point-like defects
@ a < d - defects in the form of extended fractal clusters

@ Fourier filtering method (FFM) (s rrakash etal, pys. Rev. 4 46 (1992); H.A. Makse et al, Phys. Rev. £ 53
(1996))

a=2.0 a=1.8 a=0.25
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Cluster size distribution
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Cluster size distribution
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Cluster size distribution

Ins

20 % of disorder 50 % of disorder
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Pruned-enriched Rosenbluth method (PERM)
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N

Weight of Nth step: Wy = H My (M. Rosenbluth, J. Ghem. Phys. 23, 356 (1955))
=1

Control parameters: Wfr]nax W,’,nm ( P, Grassberger, Phys. Rev. E 56, 3682 (1997) )

o W, < W,Q”’” — pruning with probability 1/2, W, = 2W,
o W, > W@ — enrichment, W, =W,/2
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Observables averaging

The configurational averaging for any observable O:

Z ; Wﬁlonf O
(0) = Zsant W
Zconf WN !

The averaging over different realizations of disorder, i.e., over different
constructed disordered lattices

1M
(0) = v Z<O>i- (2)
e

We consider M = 1000 configurations of disorder in d = 2-dimensional
lattices of linear size 2048 x 2048 at various values of correlation parameter a.
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Size exponent
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Averaged end-to-end distance of RW and SAW on a lattice with 20% of
disorderata=2.0,a=1.75, a=0.25

a VRW VSAW
2.0 0.5 + 0.001 0.750 + 0.001
1.75 0.482+0.001 0.757 £ 0.001
0.25 0.470+0.001 0.764 + 0.001
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Asphericity
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Averaged asphericity of RW and SAW on a lattice with 20% of disorder at
a=20,a=1.75 a—025

a (A) aw (A) saw
2.0 0.393+0.002 0.501 4 0.003
1.75 0.380+0.002 0.538 +0.003
0.25 0.370+0.002 0.546 + 0.003
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Conclusions

o Defects are correlated on large distances r according to a power
law with a pair correlation tunction

C(ry~r—2

@ The RWs are more compact and symmetric in correlated environments

@ The SAWSs are more extended and asymmetric in correlated
environments
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