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The Sherrington-Kirkpatrick model

Spin glasses: Random, mixed-interacting magnetic systems that
experience a random, yet cooperative, freezing of spins below some
critical temperature Tc.

Solution by G. Parisi (Replica Symmetry Breaking, RSB).

The overlap can take any value in [0,qM] with non-zero probability
density p(q).

p(q) is smooth in [0,qM), but has a δ function at qM

The order parameter is not a number, but a function q(x).

x(q) is the cumulative probability of q: x(q) =
∫ q

0 dq′p(q′).
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The Sherrington-Kirkpatrick model

Spin glasses: Random, mixed-interacting magnetic systems that
experience a random, yet cooperative, freezing of spins below some
critical temperature Tc.

Edwards-Anderson model

H = −
∑
〈i,j〉

Jijsisj , si = ±1

Jij = ±1 with 50% probability.

Disorder and frustration

Order parameter from the overlap

q = lim
t→∞

1
N

∑
x

〈sx (0)sx (t)〉t  q =
1
N

∑
x

〈sx〉2.
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The Sherrington-Kirkpatrick model

The EA model is too difficult to handle analytically.

We consider its mean-field version:
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Infinitely many states

From the previous discussion, we know that there are infinitely many
relevant pure states:

Fα − Fβ = O(1), even if N →∞.

It makes sense to consider restricted averages: 〈A〉α, so that intensive
quantities do not fluctuate in 〈· · ·〉α
Each state will have a weight wα

〈A〉 =
∑
α

wα 〈A〉α .

Example: the overlap:

qαβ =
1
N

∑
i

〈si〉α 〈si〉β =⇒ p(q) =
∑
αβ

wαwβδ(q − qαβ).

It turns out that the states live in an ultrametric space,
using qαβ to define a distance

We can classify the states in a taxonomic tree, which branches out as
we break the replica symmetry.
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The tree of states (I)

Consider a simplified case where q can only take four discrete values
(equivalently K = 3 steps of RSB).

We can group the configurations (organisms)→ states (species)→
clusters (geni)→ superclusters (families).

It makes sense, because the overlap (distance) depends only on the first
common ancestor: qαβ = q1.

Notice that the self-overlap is the same for all states:

qαα = qM, ∀α

We can consider a decomposition in clusters, instead of states:

〈A〉 =
∑

I WI 〈A〉I , WI =
∑
α∈I wα.
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The tree of states (II)

The real tree of states of a mean-field spin glass is more complicated:

Infinitely many levels: the tree branches out for any value of q < qM.
Infinite number of branches at any level.

Amusing analogy with QED: number of emitted photons diverges at low
energy↔ infinite number of branches as we consider small values of w .

However, it is possible to compute analytically the distribution of the WI ,
at any level in q:

P(W ; q) =
W x(q)−1(1−W )x(q)−1

Γ(1− x(q))Γ(x(q))
.

∑
I WI = 1 =⇒ the weights are not independent:

P(W ,W ′; q) = x(q)
Θ(1−W −W ′)(WW ′)x(q)−1(1−W −W ′)2x(q)−1

Γ(1− x(q))Γ(1− x(q))Γ(2x(q))
.

We want to generate explicit realisations of this tree.
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Free-energy fluctuations

The WI are cumbersome to handle.

We consider instead the free-energy fluctuations.

The free energy per spin of each state has fluctuations fα/N = O(1/N).

The fα are related to the wα:

wα =
e−βfα∑
γ e−βfγ

.

However, it turns out that the fα are independent:

P(fα) ∝ e−βx(qM)f

We can do this at any level of q:

WI =
e−βfI∑
J e−βfJ

, Pq(f ) ∝ e−βx(q)f .

Universality: everything is encoded in x(q).
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Generating the tree from the ground up (I)

The formulation of the fI considering a single q level in isolation is
convenient for analytical computations.

Here, we need a different approach.

We will generate the tree step by step, beginning by the root
and down to the states, at each step computing the weights.

We start considering a discretised q(x)
(equivalently, a finite number K of RSB steps).

We have, therefore, K + 1 levels.

In addition, since we cannot handle an infinite number of states,
we will ‘prune’ the tree.

We eliminate at each level all the clusters with WI < ε
(equivalent to neglecting all the states with wα < ε).

We are losing a total probability of ∼ ε1−x(qM).
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Generating the tree from the ground up (II)

Given a cluster at level qi , we want its subclusters at level qi+1.

We introduce M variables f1, . . . , fM . They are not independent:

Pqi→qi+1 (f1, . . . , fM)) ∝ exp
[
−βx(qi+1)

M∑
i=1

fi

][ M∑
i=1

exp(−βfi )
]x(qi )

.

Now the weights of the subclusters are (W = weight of the cluster at qi )

wi = W
exp(−βfi )∑M
i=1 exp(−βfi )

.

It is not immediately obvious, but this method generates the same
probability distributions for the fα.

This is because the correlation in the fi of the subclusters at level qi+1
compensates the correlations of the weights of the clusters at qi .

Notice that the first step, the root, is going from q = 0→ q0. Since
x(q = 0) = 0, in the first step we have independent fi .
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We introduce M variables f1, . . . , fM . They are not independent:

Pqi→qi+1 (f1, . . . , fM)) ∝ exp
[
−βx(qi+1)

M∑
i=1

fi

][ M∑
i=1

exp(−βfi )
]x(qi )

.

Now the weights of the subclusters are (W = weight of the cluster at qi )

wi = W
exp(−βfi )∑M
i=1 exp(−βfi )

.

It is not immediately obvious, but this method generates the same
probability distributions for the fα.

This is because the correlation in the fi of the subclusters at level qi+1
compensates the correlations of the weights of the clusters at qi .

Notice that the first step, the root, is going from q = 0→ q0. Since
x(q = 0) = 0, in the first step we have independent fi .
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The cavity method

We have seen how to generate the tree, we now want to compute
physical quantities from it. We consider a cavity approach.

We add an N + 1 spin s0 to a system with N spins si .

The average properties of s0 are the same as those of the si .

Consider the N-spin system in equilibrium and compute the cavity field

h =
N∑

k=1

J0k sk

The cavity field hα for each state is the sum of K + 1 Gaussian random
variables:

hα = h0
α + h1

α + . . .+ hK
α ,

Example: mα = tanh(βhα).

The cavity step shifts the free energies:

w ′α ∼ wα cosh(βhα)

=⇒ we have an iterative method to refine the tree
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Testing the program

We have described how to generate the tree given a q(x).

Also, how to refine the wα with a cavity step
(and with them get a new q′(x)).

As a consistency check of the program, we can try to find q(x) at a given
T , starting from an educated guess.

We consider T = 0.85, close to the critical point (Tc = 1),

In these conditions, q(x) is linear with a very good approximation.

We only need to find two parameters: qM and xM.

1 Find the correct qM for a fixed xM and compute F (xM).
2 Minimize F (xm) to find the correct xM.

Let us study the solution at xM fixed to the known correct value
xM ≈ 0.233122.
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q(x) at T = 0.85

We start with qM = 0.23 ≈ xM and iterate.

We consider ε = 10−5 =⇒ ∼ 1− ε1−xM = 99.99% of the probability.

K = 20 is enough, since q(x) is so simple.

We generate 106 samples (trees) and iterate

Each iteration takes ≈ 2 min in a single CPU.

The convergence is very slow (logarithmic).
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q(x) at T = 0.85

We need a different approach.

Start several computations, sweeping a wide range of starting qM:

The evolution is monotonic =⇒ it is easy to find the stable solution.

After 100 steps, starting with q(0)
M = 0.17, we find q(100)

M = 0.169687(3)
(expected value qM ≈ 0.169691).
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Replicon

The spin-glass susceptibility is χSG =
(
(1−m2

0)2
)2
/
[
1− β2(1−m2

0)2
]
.

It diverges for T < Tc so

X = β2(1−m2
0)2 = β2

∑
α

wα(1−m2
α)2 = 1.
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We obtain X = 0.99972(33).
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Conclusions

We have reviewed the main properties of the tree of states in
mean-field spin glasses.
We have shown how to generate explicit realisations of this tree, in
a self-consistent way.
The states computed from the tree can be used to study physical
quantities.
Applications

Evaluate all the correlation functions of the model for fixed q.
Study other mean-field models (such as the full-RSB solution for
the spin glass in a Bethe lattice).
Finite-size effects: generate the PJ (q) for single trees (single
samples) and study the smoothing of the individual peaks.

THANK YOU!
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