Disentanglement of two spins coupled to an Ising chain : sudden quench dynamics

Pierre Wendenbaum

work done with Dragi Karevski

Institut Jean Lamour, Groupe de Physique Statistique, Université de Lorraine-CNRS, Nancy

CompPhys13, Leipzig

November 29, 2013

2 Model and theoretical description

Introduction

- Entanglement used as a resource for new quantum technologies (quantum computation, quantum teleportation...) NIELSEN & CHUANG 00, BENNETT et al. 93
- Necessity to preserve entanglement between two distant objects
- \bullet Interaction with the surrounding environment \rightarrow decoherence and loss of entanglement $_{\rm ZUREK~02,~ZUREK~03}$
- We propose to study the disentanglement of two spins coupled locally to an Ising chain after the quench of its magnetic field

Model and theoretical description

• We consider two defect spins coupled to a quantum Ising chain QUAN et al. 06, YUAN et al. 07, CUCCHIETTI et al. 07, MUKHERJEE et al. 07, ROSSINI et al. 07, CORMICK & PAZ 07

Hamiltonian

$$H = -\sum_{n=0}^{N-1} \sigma_n^x \sigma_{n+1}^x - \lambda \sum_{n=0}^{N-1} \sigma_n^z - \varepsilon(|\uparrow\rangle\langle\uparrow|_A \otimes \sigma_0^z + |\uparrow\rangle\langle\uparrow|_B \otimes \sigma_d^z)$$

- Initial state $\rightarrow |\psi(0)\rangle = |\phi\rangle_{AB} \otimes |G(\lambda_i)\rangle_b$ with $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}}(|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)$
- Sudden quench $\lambda_i \to \lambda_f$
- At a latter time $t \to |\psi(t)\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\uparrow\rangle \otimes |\varphi_{\uparrow\uparrow}(t)\rangle_b + |\downarrow\downarrow\rangle \otimes |\varphi_{\downarrow\downarrow}(t)\rangle_b\right)$ where

$$\begin{split} |\varphi_{\uparrow\uparrow}(t)\rangle_b = & e^{-iH_{\uparrow\uparrow}(\lambda_f)t} |G(\lambda_i)\rangle_b \\ |\varphi_{\downarrow\downarrow}(t)\rangle_b = & e^{-iH_{\downarrow\downarrow}(\lambda_f)t} |G(\lambda_i)\rangle_b \end{split}$$

with the two effective Hamiltonians $H_{\downarrow\downarrow}(\lambda_f) = H_b(\lambda_f)$ and $H_{\uparrow\uparrow}(\lambda_f) = H_b(\lambda_f) - \varepsilon(\sigma_0^z + \sigma_d^z)$

Model and theoretical description

f

Reduced density matrix

$$p_s(t) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & D_{\uparrow\uparrow,\downarrow\downarrow}(t) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ D_{\downarrow\downarrow,\uparrow\uparrow}(t) & 0 & 0 & 1 \end{pmatrix}$$

with $D_{\uparrow\uparrow,\downarrow\downarrow}(t) = \langle \varphi_{\downarrow\downarrow}(t) | \varphi_{\uparrow\uparrow}(t) \rangle = \langle G(\lambda_i) | e^{iH_{\downarrow\downarrow}(\lambda_f)t} e^{-iH_{\uparrow\uparrow}(\lambda_f)t} | G(\lambda_i) \rangle \in [0,1]$ the decoherence factor

• Entanglement determined by the concurrence $C(t) \in [0:1]$ WOOTTERS 98

$$C_{AB}(t) = \max\{0, \sqrt{\mathscr{L}(t)}\}\$$

where $\mathscr{L}(t) = \left| D_{\uparrow\uparrow,\downarrow\downarrow}(t) \right|^2 = \left| \langle G(\lambda_i) | e^{iH_{\downarrow\downarrow}(\lambda_f)t} e^{-iH_{\uparrow\uparrow}(\lambda_f)t} | G(\lambda_i) \rangle \right|^2$ is the Loschmidt Echo

Results : Effect of the quench

• Effect of the quench on the Loschmidt Echo

 \bullet Smaller decoherence in the equilibrium situation \rightarrow Disentanglement enhanced by the quench

• Bigger disentanglement for strong quench amplitude $|\lambda_f-\lambda_i|$

Results : Effect of the quench

• $\mathscr{L}(t=10)$ as a function of λ_i (left) and λ_f (right)

• $\mathscr{L}(t=10)$ increasing for $\lambda_i < \lambda_f$ (left) and $\lambda_f < \lambda_i$ (right)

 \bullet For very high initial field \to saturation of the echo corresponding to a completely polarized initial state (dashed lines)

Results : Effect of the quench

0,9

0,95

- Changes in the ground state properties for λ_i close the critical value 1
- Finite size scaling in the derivative of the Loschmidt Echo

•
$$|\lambda_c - \lambda_{max}| \sim c_1 N^{\gamma}$$

• $\frac{d\mathscr{L}}{d\lambda_i}\Big|_{\lambda_{max}} \sim c_2 \ln N + \text{constant}$

λ

• Scaling coherent with the litterature OSTERLOH et al. 02

-0.8

Results : Short times behavior

• Gaussian evolution for short times

$$\mathscr{L}(t) = e^{-\alpha t^2} \approx 1 - \alpha t^2 \quad \text{with} \quad \alpha = \langle H_i^2 \rangle - \langle H_i \rangle^2, \quad \langle . \rangle = \langle G(\lambda_i) | . | G(\lambda_i) \rangle$$

 \rightarrow short times evolution independant of the quench in the bath

Results : Short times behavior

• Gaussian evolution for short times

$$\mathscr{L}(t) = e^{-\alpha t^2} \approx 1 - \alpha t^2 \quad \text{with} \quad \alpha = \langle H_i^2 \rangle - \langle H_i \rangle^2, \quad \langle . \rangle = \langle G(\lambda_i) | . | G(\lambda_i) \rangle$$

 \rightarrow short times evolution independant of the quench in the bath

Results : Short time behavior

 \bullet Dependence of α with the parameters

Results : Short time behavior

• Dependence of α with the parameters

• Saturation of α with the distance : the spins decohere as in the situation

Results : Short time behavior

• Dependence of α with the parameters

- Except when the bath is prepared at criticality
- Saturation of α with the distance : the spins decohere as in the situation

Results : Independant dynamics

• We look at $\Delta \mathscr{L}$, the difference between the Echo of two spins coupled to two different baths and coupled to a single bath \rightarrow part of the decoherence directly due to the mutual interaction through the bath

• $\Delta \mathscr{L}$ starts to be different from 0 at the beginning of the evolution for initial magnetic fields close to 1 \rightarrow Long range correlations in the initial state

• Disentanglement always stronger in the quench situation than in the equilibrium one

• Short times dynamics independant of the quench

• Signature of the quantum phase transition in the Loschmidt Echo

Calculation of the Loschmidt Echo

- $\mathscr{L}(t) = |\langle \varphi_{\downarrow\downarrow}(t) | \varphi_{\uparrow\uparrow}(t) \rangle|^2 = \sqrt{|\det(\mathbb{1} (C_{\downarrow\downarrow}(t) C_{\uparrow\uparrow}(t)))|}$ with $C_{\downarrow\downarrow}(t)$ and $C_{\uparrow\uparrow}(t)$ the covariance matrices associated to the states $|\varphi_{\downarrow\downarrow}(t)\rangle$ and $|\varphi_{\uparrow\uparrow}(t)\rangle$ KIEL & SCHLINGEMANN 10
- Finally

$$\mathscr{L}(t) = \mathcal{C}_{AB}^2 = \sqrt{\left|\det(\mathbb{1} - (e^{-it\mathcal{H}_{\downarrow\downarrow}(\lambda_f)}C(0)e^{it\mathcal{H}_{\downarrow\downarrow}(\lambda_f)} - e^{-it\mathcal{H}_{\uparrow\uparrow}(\lambda_f)}C(0)e^{it\mathcal{H}_{\uparrow\uparrow}(\lambda_f)}))\right|}$$