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Glass forming materials

Mean field: Random first order transition (RFOT)

Mean Field
The structural transition is random first order transition (RFOT)
For T < Tc: the ergodicity is lost due to the appearance of an
exponentially large number of metastable states
At TK(< Tc) ideal glass transition: sharp decrease of available states
We consider the replica potential W (q) as a function of the degree of
similarity between all the possible amorphous configurations
The glass transition can be detected by the appearance of a second
minimum at high q in W (q)
The two minima are related to similar and completely different
configurations, not to different phases.
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Glass forming materials

Mean field: Random first order transition (RFOT)

W (q)
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One can observe a precursor of the phase transition in the shape of this
potential still deep in the liquid phase!
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Glass forming materials

Two coupled replicas

External field ε: Htot(R1,R2) = H(R1) + H(R2)− εq(R1,R2)

The free energy F (ε) = minq W (q)− εq
The glass transition point becomes a coexistence line ε(T ) separating
the low and high q regions.
This line extends from TK to higher temperatures, terminating in a
critical point at Tc.

Universality class of the critical point
Quenched potential (ε acts only on one of the replicas): RFIM.
Annealed potential (ε acts on both replicas): Ising model.
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Model and observables

Model and observables

Model
We study a 50 : 50 mixture of N = 62, 124, 250, 500 binary HS
d2 = 1.4 d1 ⇒ Inhibit crystallization
Constant volume ensemble. Volume fraction φ = πN

12V

(
d3
A + d3

B
)

Overlap
Consider two configurations in equilibrium α = 1, 2
Divide the whole volume in Nc small boxes and compute the occupation:
n(α)i , T = 1(0) there is (not) particle of type T (= A,B) in the box.

Overlap Q12 = 1
Nc

∑Nc
i=1 n(1)i , An(2)i , A + n(1)i , Bn(2)i , B .

Low Q12: completely different confs High Q12: similar conf (glass).
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Tethered formalism

Computing W (q) with the tethered MC method

The free energy cost

W (q) = − 1
N

log
∫ ∫

dR1dR2 e−βH(R1)−βH(R2) δ (q − q1,2)

Its convolution with a strongly peaked Gaussian

Ŵ (q) = − 1
N

log
∫ ∫

dR1dR2 e−βH(R1)−βH(R2) e−
kN
2 (q−q1,2)

2

We derivative with respect to q

Ŵ ′(q) =
∫ ∫

dR1dR2 k [q − q1,2]ωN(R1,R2,V ; q)∫ ∫
dR1dR2 ωN(R1,R2,V ; q)

,

with
ωN(R1,R2, φ; q) = e−βH(R1)−βH(R2) e−

kN
2 [q−q1,2(R1,R2)]

2
.
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Tethered formalism

Computing W (q) with the tethered MC method

That means that the replica field can be understood as the MC thermal
average obtained with the tethered measure

Ŵ ′(q) = 〈ε̂〉q , ε̂ = k (q − q1,2)

The generalization of this formalism to the presence of an external field ε:
probability distribution density Pε(q) ∝ exp [− (NW (q)− εq)]
Then,

log P̂ε(q2)− log P̂ε(q1) = N
∫ q2

q1

dq
[
〈ε̂〉q − ε

]
,

The coexistence condition Pεco(q low) = Pεco(qhigh), is equivalent to a
Maxwell construction
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Results

Maxwell construction
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Results

Finding the critical point

Extend the coexistence line below the critical point: Widow line
Search ε that makes Pε(q) balanced
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Sconf ∝ q∗ε ⇒ φK from extrapolation to ε = 0
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Results

Finding the critical point

Static susceptibility χ = N[
〈
q2〉− 〈q〉2]
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Ising universality class ⇒ χ ∝ |φ− φc|−γ , with γ = 1.2372
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Results

Finding the critical point

Kurtosis κ = 〈m〉4

〈m2〉2
with m = q − 〈q〉 (Binder: 1− κ/3)
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Universal value at φc: κ = 1.6043(10)
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Conclusions

Conclusions

We have studied a system of two coupled replicas of a binary mixture of
hard spheres
We compute the replica potential (as in MF) thanks to the tethered
algorithm
We present clear evidences of the existence of a first order line that ends
in a critical point (at φ’s below φK)
This result is in agreement with theories that predict that such
transition is a precursor of the standard ideal glass transition
The critical properties are compatible with those of an Ising system

THANK YOU VERY MUCH
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