Magnetic properties of two-color QCD at finite temperature

work with Michael Ilgenfritz, Martin Kalinowski, Michael Muller-Preussker and Alexander Schreiber

arXive 1203.3360 1310.7876

I. Motivations

II. Formalism

III. Magnetic catalysis

IV. The phase diagram

V. Conclusions

(VI. Calculational method)

Motivations:Non-central heavy ion collisions at RHIC and LHC

 $B_y \sim m_\pi^2 \sim 10^{18}$ Gauss

 $T \sim m_{\pi}$

Furthermore

- \bullet Very strong magnetic fields in the early universe $\sim 10^{23}~{\rm Gauss}$
- Strong magnetic fields in compact stars (magnetars) $\sim 10^{13}$ Gauss

(Largest man-made magnet $= 10^6$ Gauss)

Non perturbative methods necessary

- Models
- Lattice simulations

This talk: (T,B) Phase Diagram

 $\bar{B} = Be_z$ **B** constant and homogeneous

Lattice formalism

Lattice size: $N_{\sigma}^3 \times N_{\tau} \equiv \mathcal{V}$

 $V = (N_{\sigma}a)^{3}$ $T = \frac{1}{N_{\tau}a} \qquad a = \text{lattice spacing}$

 $Z(T, B, \mu) = \int dP(U) \qquad \qquad <\mathcal{O}> = \frac{1}{Z} \int \mathcal{O}(U) dP(U)$

U stands for $U_{\mu}(x) = e^{iA_{\mu}(x)} \in SU(N)$

 $dP(U) = \prod dU e^{-\beta S_g(U)} Det(D(e^{iqBa^2}, e^{\mu a}) + ma) > 0 \text{ only if } \mu = 0 \text{ for } N > 2$

 β = bare coupling constant, ma = bare quark mass, $a = a(\beta)$

Our calculations

 $SU(2) \quad \mu = 0 \qquad N_f = 4$ $32^3 \times N_\tau \qquad N_\tau = 10, 8, 6, 4 \qquad \beta = 1.8 \qquad \text{fixed scale approach}$

Implementing a constant magnetic field on a periodic lattice \Rightarrow $\phi = a^2 q B = 2\pi N_b / N_{\sigma}^2, \qquad N_b \in Z \qquad \phi \text{ periodic } \Rightarrow N_b < N_{\tau}^2 / 4$

Reasons for our choice

Simpler theory but similar chiral properties as in QCD Action local on the lattice, some chiral symmetry left Can be extended to $\mu \neq 0$

Simulations with CUDA Fortran on GPU:s

Chiral order parameter (Exact for m=0)

$$a^3 < \bar{\chi}\chi > = \frac{1}{4\mathcal{V}} < \operatorname{Tr}(D+m)^{-1} > = -\frac{1}{4\mathcal{V}} \frac{\partial}{\partial m} \log(Z)$$

 $\langle \bar{\chi}\chi \rangle$ is the chiral condensate

Confinement order parameter

(Exact for $m \to \infty$)

$$< L > = \frac{1}{N_{\sigma}^3} \sum_{\bar{n}} < \frac{1}{2} \operatorname{Tr} \prod_{n_4=1}^{N_{\tau}} U(\bar{n}, n_4) > \sim e^{-\frac{F_q}{T}}$$

 F_q is the free energy of a static quark

Magnetic catalysis: The chiral condensate increases with B

Scale from Static potential $ma = 0.0025 \Rightarrow m_{\pi} = 175 \text{ MeV}$ at B = 0

 $T_c(B=0) \approx m_{\pi}$

Magnetic catalysis in the transition region?

(Regensburg-Wuppertal collaboration claims the opposite!)

Our data

ma = 0.0025 $T = 193 \,\mathrm{MeV}$

The indirect influence of B on the gluons

Conclusions

Phase Diagram

Next: Simulations nearer T_c , smaller masses $, \mu \neq 0$ cme-effect

$$\begin{aligned} D + ma &\equiv M \qquad DetM = DetM^{\dagger} \qquad M^{\dagger}M > 0 \\ dP &= e^{-\beta S_g} (DetM)^2 = e^{-\beta S_g} (DetM^{\dagger}M) = d\phi^{\dagger}d\phi dP e^{-\beta S_g + \phi^{\dagger}(M^{\dagger}M)^{-1}\phi} \\ (M^{\dagger}M)_{eo} &= 0 \qquad \text{choose} \qquad (M^{\dagger}M)_{ee} \end{aligned}$$

Molecular dynamics:

$$dP dp d\phi^{\dagger} d\phi e^{-H}$$
 $H = \sum_{n} p_{\mu}^{2}(n) + S_{eff}(U,\phi)$

Discretized Eq. of motion, Omelyan integration

Solve $(M^{\dagger}M)\eta = \phi$ $M^{\dagger}M$ sparse $ma < \lambda < 1 \Rightarrow$

Precond. Conj. Gradient on GPU

At end of trajectory Metropolis update \Rightarrow Algorithm exact