Effect of bending stiffness on a homopolymer inside a spherical cage

Martin Marenz

Institute for Theoretical Physics University of Leipzig

- 2 Polymer Model
- (Almost) complete flexible case
- 4 Effect of bending stiffness

Motivation

Polymer Model (Almost) complete flexible case Effect of bending stiffness Summary

Figure : Effect of a confining potential on the melting of protein SH3.¹

¹N. Rathore et al., Biophys. J. **90**, 2006

Motivation

Polymer Model (Almost) complete flexible case Effect of bending stiffness Summary

Figure : Effect of a confining potential to a β -barrel protein.²

²M. Friedel et al., J. Chem. Phys. **118**, 2003

Bead-Stick Homopolymer

bulk case

•
$$H = E_{\text{bend}} + E_{LJ}$$

• $E_{\text{LJ}} = 4 \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} (\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^{6}})$
• $E_{\text{bend}} = \kappa \sum_{i=1}^{N-2} (1 - \cos \Theta_{i})$

bulk case

•
$$H = E_{\text{bend}} + E_{LJ}$$

• $E_{\text{LJ}} = 4 \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} (\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^{6}})$
• $E_{\text{bend}} = \kappa \sum_{i=1}^{N-2} (1 - \cos \Theta_{i})$

κ

bulk case

•
$$H = E_{\text{bend}} + E_{LJ}$$

• $E_{\text{LJ}} = 4 \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} (\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^{6}})$
• $E_{\text{bend}} = \kappa \sum_{i=1}^{N-2} (1 - \cos \Theta_i)$

bulk case

•
$$H = E_{\text{bend}} + E_{LJ}$$

• $E_{\text{LJ}} = 4 \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} (\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^{6}})$
• $E_{\text{bend}} = \kappa \sum_{i=1}^{N-2} (1 - \cos \Theta_i)$

 κ

constrained case

$$H = E_{\text{bend}} + E_{LJ} + V_{\text{Sphere}}$$

• $E_{\text{bend}} = \kappa \sum_{i=1}^{N-2} (1 - \cos \Theta_i)$
• $E_{\text{LJ}} = 4 \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} (\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^6})$
• $V_{\text{Sphere}} = \begin{cases} 0 & \text{if all } |r_i| < R_S \\ \infty & \text{if any } |r_i| \ge R_S \end{cases}$

constrained case

٢

$$H = E_{\text{bend}} + E_{LJ} + V_{\text{Sphere}}$$

• $E_{\text{bend}} = \kappa \sum_{i=1}^{N-2} (1 - \cos \Theta_i)$
• $E_{\text{LJ}} = 4 \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} (\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^6})$
• $V_{\text{Sphere}} = \begin{cases} 0 & \text{if all } |r_i| < R_s \\ \infty & \text{if any } |r_i| \ge R_s \end{cases}$

constrained case

٢

$$H = E_{\text{bend}} + E_{LJ} + V_{\text{Sphere}}$$

• $E_{\text{bend}} = \kappa \sum_{i=1}^{N-2} (1 - \cos \Theta_i)$
• $E_{\text{LJ}} = 4 \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} (\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^{6}})$
• $V_{\text{Sphere}} = \begin{cases} 0 & \text{if all } |r_i| < R_S \\ \infty & \text{if any } |r_i| \ge R_S \end{cases}$

flexible polymer ($\kappa = 0.00$)

Derivative of the energy and radius of gyration of a homopolymer (28 monomers) with $\kappa = 0.00$. Lines indicate pseudo phase transitions between desorbed (D), collapsed (C) and frozen (F1, F2) phases.

• For $\kappa = 0.00$ collapse transition shifts to lower temperatures.

• Freezing transitions hardly change transition temperature.

For $\kappa = 0.00$ all points fall into one common master curve. $|T_{\max}^{\Theta,N} - T_c^{\Theta,N}| \propto \left(\frac{N^{\frac{1}{2}}}{R_s}\right)^{\gamma} \text{ with } \gamma = 3.65(15)$

Effect bending stiffness

kappa dependency of $\frac{d}{dT} < R_g^2 >$

Contour plot of $\frac{d}{dT} \left< R_g^2 \right>$ for a free 14mer. Bright colours indicate high thermal activity and thus the location of pseudo phase transitions. Detailed overview of a similar model can be found in the work of D .T. Seaton et al., Phys. Rev. Lett. **110**, 2013.

Plot of $\frac{d}{dT} \langle R_g^2 \rangle$ for several free 28mer with different κ . The peak in $\frac{d}{dT} \langle R_g^2 \rangle$ denotes the location of the pseudo phase transition. For higher bending stiffness the peak goes to lower temperatures.

Collapse transition at $\kappa = 0.00$

Collapse transition at $\kappa = 4.00$

Collapse transition at $\kappa = 8.00$

$$\frac{d}{dT} \langle R_g^2 \rangle$$
 of a 28mer for $\kappa = 2.00$

$$\frac{d}{dT} \langle R_g^2 \rangle$$
 of a 28mer for $\kappa = 3.00$

κ	$\gamma(R_g)$
0.00	3.65(15)
1.00	4.34(16)
2.00	4.29(16)
3.00	4.81(18)
4.00	_

?

Summary

