Confined semiflexible chains in a good solvent: A Monte Carlo test of scaling concepts

Hsiao-Ping Hsu

Max Planck Institute for Polymer Research, Mainz, Germany

Kurt Binder

Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

Polymers in confining geometries

● A strip of width **D**:

$$\int d = d$$

(nanoslit)

$$d=2 \
ightarrow \ d=1$$

• Two parallel hard walls separated by a distance **D**:

(nanoslit) $d = 3 \rightarrow d = 2$

● A tube of diameter **D**:

(nanochannel) $d=3 \rightarrow d=1$

Theoretical predictions (flexible — stiff)

free energy: $\Delta F/k_BT = D^{-5/3}\ell_p^{1/3}$ end-to-end distance: $R_{||} = L\ell_p^{1/3}D^{-2/3}$

$$\ell_p$$
: persistence length

Odijk regime:Macromolecules, 16, 1340 (1983)
$$D_{\perp}^{\uparrow}$$
 $\widehat{\theta}$ $D < l_p$ Deflection length $\lambda = (D^2/\ell_p)^{1/3}$, angle $\theta \approx D/\lambda \approx (D/\ell_p)^{1/3}$ The Kratky-Porod model: $\mathcal{H}_{KP} \{ \vec{r}(s) \} = \frac{k}{2} \int_0^L ds \left(\frac{\partial^2 \vec{r}}{\partial s^2} \right)^2$

 \Rightarrow free energy: $\Delta F/k_BT \sim L/\ell_p^{1/3}D^{2/3},\,L \geq \ell_p$

end-to-end distance: $R_{||} = L\cos(\theta) = L(1 - A(D/\ell_p)^{2/3})$

DNA confined in nanochannel (Exp)

• Extension R/L vs. ionic-strength I

DNA confined in imprinted nanochannel arrays

Reisner et al. Rep. Prog. 75, 106601 (2012)

Daoud - de Gennes blob theory

Flexible polymer chains of size N confined in a tube

- Total number of monomers: $N = gn_b$ ℓ_b : bond length
- End-to-end distance: $R_{||} = n_b(2r_b) = n_bD$ || tube within a blob, $D = \ell_b g^{
 u} = 2r_b$, $\nu = 3/5$ (Flory, 3DSAW) $\Rightarrow R_{||} = N\ell_b(D/\ell_b)^{1-1/\nu}$
- Free energy: $\Delta F = n_b [k_B T] = N/g = N(D/\ell_b)^{-1/
 u}$

Daoud - de Gennes blob theory

Flexible polymer chains of size N confined in a strip

- Total number of monomers: $N = gn_b$ ℓ_b : bond length
- End-to-end distance: $R_{||} = n_b(2r_b) = n_bD$ || strip within a blob, $D = \ell_b g^{\nu} = 2r_b$, $\nu = 3/4$ (Flory, 2DSAW) $\Rightarrow R_{||} = N\ell_b(D/\ell_b)^{1-1/\nu}$
- Free energy: $\Delta F = n_b [k_B T] = N/g = N(D/\ell_b)^{-1/
 u}$

Daoud - de Gennes blob theory

Flexible polymer chains of size N confined in a slit

- Total number of monomers: $N = gn_b$ ℓ_b : bond length
- End-to-end distance: $R_{||} = n_b(2r_b) = n_b^{3/4}D$ || walls within a blob, $D = \ell_b g^{\nu} = 2r_b$, $\nu = 3/5$ (Flory, 3DSAW) $\Rightarrow R_{||} = N^{3/4}\ell_b(D/\ell_b)^{1-3/4\nu} \approx \ell_b N^{3/4}(D/\ell_b)^{-1/4}$
- Free energy: $\delta F = n_b [k_B T] = N/g = N(D/\ell_b)^{-1/
 u}$

Snapshots of 3D semiflexible chains

Flexible chain,
$$q_{\rm b} = 0.4$$

Moderately stiff chain, $q_{\rm b} = 0.05$

Stiff chain, $q_{\rm b} = 0.005$

- *q_b*: bending factor
- $\boldsymbol{P}_{\boldsymbol{p}}$: persistence length
- L: contour length, $L = N \ell_b$

 $\ell_p, L \leftrightarrow D$ (confinement constraint) ?

Semiflexible chains in bulk

• Single crossover (rod-like - SAW) in d = 2:

theoretical predictions: $L^{
m rod}=\ell_p$ $L^*=\ell_P^3/\ell_b^2$

Double crossover (rod-like - Gaussian - SAW) in d = 3:

Confined semiflexible chains - p. 7

Semiflexible SAW model with PERM

A semiflexible polymer chain in a good solvent

- Excluded volume effect ⇒ Self-avoiding walk (SAW)
- Chain stiffness
 - \Rightarrow Bond-bending potential

$$egin{aligned} U_{ ext{bend}}(heta) &= & \epsilon_b(1-\cos heta) \ &= & \left\{egin{aligned} 0 & heta = 0^o \ \epsilon_b & heta = 90^0 \end{aligned}
ight. \end{aligned}$$

bending energy ϵ_b \uparrow , stiffness \uparrow

• Partition sum: $Z_{N,N_{ ext{bend}}} = \sum_{config.} C_{N,N_{ ext{bend}}} q_b^{N_{ ext{bend}}}$

on the square lattice (d = 2) and simple cubic lattice (d = 3)under geometric constraints

Flexible chains confined in a strip

- Scaling predictions:
 - Fugacity per monomer $\mu_D \mu_\infty pprox 0.737 D^{-4/3}$
 - End-to-end distance $\langle \Delta x
 angle / N pprox 0.915 D^{-1/3}$
 - Monomer density on the walls $ho_b pprox 10.75 D^{-2}$

strip width: $8 \le D \le 320$

chain length: $N \leq 128\,000$

Hsu & Grassberger, Eur. Phys. J. B 36, 209 (2003)

Semiflexible chains confined in a strip

strip width: $8 \le D \le 320$

chain length: $N \leq 128\,000$

effective persistence length: $\ell_p(D)$

Bond orientational correlation function:

 $\langle \cos \theta(s) \rangle = \langle \vec{a}_i \cdot \vec{a}_{j=i+s} \rangle / \ell_b^2$ $\equiv \exp(-s\ell_b/\ell_p) \Rightarrow \ell_p/\ell_b$

$q_{\rm b}$	$l_{\rm p}$ (2D in bulk)
0.005	124	stiff
0.01	62	1
0.02	31	
0.03	21	
0.05	13	
0.1	8	
0.2	4	
0.4	2	
1.0	1	flexible

Semiflexible chains confined in a strip

strip width: $8 \le D \le 320$

chain length: $N \leq 128\,000$

effective persistence length: $\ell_p(D)$

• Scaling hypothesis for $\ell_p(D)$ ($\ell_p(D) \to \ell_p$ as $D \to \infty$) $\ell_p(D) = \ell_p \tilde{P}(\eta = D/\ell_p)$ q_{b} 0.4 with $\tilde{P}(\eta) = \begin{cases} 1 & \text{for } \eta \gg 1 & 1 \\ c/\eta & \text{for } \eta \ll 1 & 0 \\ \text{slope} = -1 \end{cases}$ with ◬ 0.05 $\mathbf{\nabla}$ 0.03X 0.02 0 0.01 Ж 0.005 Ŀ c: constant Each 90° kink contributes 0.01 0.1 1 10 100 a factor $q_b = \exp(-\epsilon_b/k_B T), q_b \propto 1/\ell_p$ D/I_{p} $\ell_p(D) \propto \ell_p^2, \, D \ll \ell_p$

Scaling predictions (flexible — stiff)

- Fugacity per monomer $(\eta = D/\ell_p)$ $[\mu_D(q_b) - \mu_\infty(q_b)]\ell_p \sim \eta^{-4/3}$
- Free energy per monomer $F(q_b, D) = \ell_p^{-1} \tilde{F}(\eta)$ $= -\frac{1}{N} \ln \frac{Z_N(q_b, D)}{Z_N(q, \infty)}$

Scaling predictions (flexible — stiff)

- Fugacity per monomer $(\eta = D/\ell_p)$ $[\mu_D(q_b) - \mu_\infty(q_b)]\ell_p \sim \eta^{-4/3}$
- Free energy per monomer $F(q_b,D) = \ell_p^{-1} ilde{F}(\eta)$
- Force per monomer

 $egin{aligned} f &= rac{\partial F}{\partial D} = \ell_p^{-2} ilde{F}_f(\eta), \ ilde{F}_f(\eta \gg 1) \propto \eta^{-7/3} \end{aligned}$

Scaling predictions (flexible — stiff)

- Fugacity per monomer $(\eta = D/\ell_p)$ $[\mu_D(q_b) - \mu_\infty(q_b)]\ell_p \sim \eta^{-4/3}$
- Free energy per monomer $F(q_b,D)=\ell_p^{-1} ilde{F}(\eta)$
- Force per monomer $f = \frac{\partial F}{\partial D} = \ell_p^{-2} \tilde{F}_f(\eta),$ $\tilde{F}_f(\eta \gg 1) \propto \eta^{-7/3}$
- End-to-end distance $\langle \Delta x
 angle = N ilde{X}(\eta), \, ilde{X} \propto \eta^{-1/3}$
- Monomer density on the walls $\rho_b = \frac{Nf\ell_p}{\langle \delta x \rangle} = \ell_p^{-1} \tilde{F}_{\rho}(\eta),$ $\tilde{F}_{\rho}(\eta \gg 1) \propto \eta^{-2}$

End-to-end distance || walls

Monomer density profiles

Scaling prediction: Eisenriegler et al., J. Chem. Phys. 77, 6269 (1982)

$$ho(y)=rac{1}{D+1}f_
ho(\xi)\equivrac{1}{D+1}A[\xi(1-\xi]^{4/3}\,,\,\,\xi=y/(D+1)$$

A=10.38 , Hsu & Grassberger, Eur. Phys. J. B 36, 209 (2003)

3D semiflexible chains confined in a slit

• Scaling predictions (in bulk): $R \approx L \equiv N\ell_b, L < \ell_p \text{ (rod-like)}$ $R \approx (\ell_p L)^{1/2}, \ell_p < L < \ell_p^3/\ell_b^2 \text{ (Gaussian)}$ $R \approx (\ell_p \ell_b)^{1/5} L^{3/5}, L > \ell_p^3/\ell_b^2 \text{ (SAW-like)}$

Cross-over point (Gaussian \leftrightarrow SAW) $L^* = \ell_P^3 / \ell_b^2$ $R^* = \ell_p^2 / \ell_b$

3D semiflexible chains confined in a slit

Scaling predictions (in bulk): R ≈ L ≡ Nℓ_b, L < ℓ_p (rod-like) R ≈ (ℓ_pL)^{1/2}, ℓ_p < L < ℓ³_p/ℓ²_b (Gaussian) R ≈ (ℓ_pℓ_b)^{1/5}L^{3/5}, L > ℓ³_p/ℓ²_b (SAW-like)
Scaling predictions (in slit):

Confined Gaussian chains

Confined SAW-like chains

Cross-over point

(Gaussian \leftrightarrow SAW)

 $L^* = \ell_P^3 / \ell_b^2$

 $R^* = \ell_n^2/\ell_b$

End-to-end distance || walls $(L = N\ell_b \gg L^*)$

- Confined Gaussian chains $(\ell_p < D < R^*)$: $R_{||}^2 = (R^*)^2 n_{
 m blob}^{3/2} = \ell_b^{5/2} \ell_p^{-1/2} N^{3/2}$
- Confined SAW-like chains $(D>R^*)$: $R_{||}^2=D^2n_{
 m blob}^{3/2}=\ell_b^2(D/\ell_p)^{-1/2}N^{3/2}$

$q_{\rm b}$	$l_{\rm p}$ (3	BD in bulk)
0.005	51.52	stiff
0.01	26.08	1
0.02	13.35	
0.03	9.10	
0.05	5.70	
0.1	3.12	
0.2	1.81	
0.4	1.13	\checkmark
1.0	0.67	flexible

End-to-end distance $||, \perp$ walls $(L > L^*)$

- Free semiflexible chains: $R \approx (\ell_p \ell_b)^{1/5} (N \ell_b)^{\nu=3/5}$
- Confined semiflexible chains $R_{||}^2,\,R_{\perp}^2\sim\ell_p^{2/5}N^{2
 u}$ (3DSAW)

 $\leftrightarrow R_{||}^2 \sim \ell_p^{1/2} N^{3/2} D^{-1/2} \ell_b^2$ (2DSAW), $\leftrightarrow R_{\perp}^2 \sim D^2$

At the crossover point: $N^{3/5}/D \sim \ell_p^{-1/5}$

End-to-end distance $||, \perp$ walls $(L > L^*)$

- Free semiflexible chains: $R \approx (\ell_p \ell_b)^{1/5} (N \ell_b)^{\nu=3/5}$
- Confined semiflexible chains $R_{||}^2,\,R_{\perp}^2\sim\ell_p^{2/5}N^{2
 u}$ (3DSAW)

 $\leftrightarrow R_{||}^2 \sim \ell_p^{1/2} N^{3/2} D^{-1/2} \ell_b^2$ (2DSAW),

 $H \leftrightarrow R_+^2 \sim D^2$

End-to-end distance $||, \perp$ walls $(L > L^*)$

- Free semiflexible chains: $R \approx (\ell_p \ell_b)^{1/5} (N \ell_b)^{\nu=3/5}$
- Confined semiflexible chains $R_{||}^2, R_{\perp}^2 \sim \ell_p^{2/5} N^{2\nu}$ (3DSAW) $\leftrightarrow R_{||}^2 \sim \ell_p^{1/2} N^{3/2} D^{-1/2} \ell_b^2$ (2DSAW), $\leftrightarrow R_{\perp}^2 \sim D^2$

Monomer density profiles

Scaling prediction: Eisenriegler et al., J. Chem. Phys. 77, 6269 (1982)

$$ho(z)=rac{1}{D+1}f_
ho(\xi)\equivrac{1}{D+1}A[\xi(1-\xi]^{4/3}\,,\,\,\xi=z/(D+1)$$

A=18.74 , Hsu & Grassberger, J. Chem. Phys. 120, 2034 (2004)

Conclusions

- Under weak confinement $D \gg \ell_p$:
 the Daoud de Gennes scaling predictions are verified
- Under strong confinement $D \leq \ell_p$: strong deviations from the predictions based on Kratky-Porod worm-like chain model
- Odijk's deflection length plays no role for semiflexible polymers with discrete bond angles
- Monte Carlo test of scaling concepts ⇒ interpretation of future experimental studies

References: Soft Matter 9, 10512 (2013), Macromolecules 46, 8017 (2013)

Deutsche Forschungsgemeinschaft (DFG), SFB625/A3 John von Neumann Institut für Computing (NIC), Jülich