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1. Motivation

Question : new aspects in behaviour of interacting many-body systems ?

use as paradigms for fresh insight and as

reference examples for further numerical study

non-equilibrium setting : master equation for the probability distribution
P({c};t) of a configuation {o}

gtp({a}; t)=>_ [w(o’' = o)P({c'};t) — w(o = o')P({c}; 1)]
{o'}

If detailed balance condition, with P.,({c}) = lim¢_,oc P({c}; t)

w(o — 0 )Peq({0}) = w(o’ = 0)Peq({c'}: 1)
then relaxion towards equilibrium !

No probability currents between equilibrium configurations {c}, {c'}.
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three ways (2 old, 1 new) how to detailed balance
= non-equilibrium stationary state

(a) probability currents, through coupling to external engines
(b) absorbing stationary states
(c) extra probability currents through resets

first case study : single random walk with reset EVANS & MAJUMDAR 11
may lead to improved search algorithms
here : interacting many-body system with reset CDPR

= Coagulation-Diffusion Process with a stochastic Reset



2. Single random walk with a reset, in 1D
EvANs & MAJUMDAR '11 arxiv:1102.2704

random walk of a single particle,
sent back to its initial position xg with probability r at each step

without reset with reset rate r > 0
(0 — D(‘J)Z()P(t,x) =0 (0 — D(’?ﬁ)P(t,x) =

—rP(t,x) + ré(x — xo)

P(t.x) = (2702) V2 exp | <325 P(oo,x) = § exp[alx ]

gaussian laplacian
a?>=r/D




3. Coagulation-diffusion process with a reset

‘coagulation’ reaction : 2A Dy A, diffusion : A+ 0 <2501 A

method of em pty intervals : BEN AVRAHAM, BURSCHKA, DOERING 90,. . .
probability of n consecutive empty sites : E,(t)=P([n]t)
closed equation of motion continuum limit E,(t) — E(t,x)

(0 —2DO2)E(t,x) =0 ; E(t,0)=1, E(t,00)=0

treat non-standard boundary conditions by analytic continuation to x < 0 :

’ E(f, —X) = 2 — E(f. X) ‘ DURANG, FORTIN, MH ... 10
= slow, algebraic, decay of particle density
— 1
p(t) = = OE(E X, o~ 7, o=

« measured in exciton kinetics on 1D polymers/carbon nano-tubes 19s9-2013
CioHs : 0.52—0.59, PMMA : 0.47(3), TMMC : 0.48(4), Cnano : 0.51(3)

KOPELMAN et al. ; KROON et al.; RUSSO et al.; SRIVASTAVA & KONO; ALLAM et al.



define the CDPR on a lattice :

1. select a reset configuration, described by empty-interval probabilities F,
Example : if each site is occupied with proba. p = F, = (1 — p)"

cont. limit : F, — F(x) = e~ with ¢ = —In(1 — p) ~ p + O(p?)
2. take a chain with N sites, 1 sweep := N steps of micro dynamics
3. in each step, a single particle either to a nearest neighbour,

with proba. Py =P, = D/(2D + r/N)
or else the system is reset to the distribution F,
with proba. P, = (r/N) /(2D + r/N).
continuum limit : have for the empty-interval probabilities E,(t) — E(t, x)

(9 — 2DO?)E(t,x) = r (F(x) — E(t,x)) ; E(t,0)=1, E(t,00)=0

quite analogous to master equation of a single random walk with reset !



to test the equation of motion :
solve them explicitly on the discrete lattice and compare with simulations

particle density : p(t) =1 — E1(t) left panel, p = 0.5

pair density . p(t) =1- 2E]_(t) + Ez(t) right panel
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perfect agreement between analytical and numerical methods
in general exponential approach towards p(c0) # 0, p(o0) # 0



A) CDPR in the continuum

In the continuum limit, solve equation of motion

O+E(t,x) = 2DIZE(t,x) — rE(t,x) + rF(x) , E(t,0) =1, E(t,00) =0

via the decompostion | E(t,x) = 3f(x) + b(t,x) such that
f(x) — a®f(x) +2a*F(x) = 0; f(0)=2, f(o00) =0
Oeb(t,x) — 2Dd2b(t, x) + rb(t,x) = 0 ; b(t,0) = b(t,00) =0

where o := r/(2D). The solutions are (with bo(x) = Eo(x) — 3f(x), F(x) =
f(X) _ (2_ (64 ) efocx_'_ (64 efcx_’_ (64 (ef(cfa)x _ 1) e X

a—+c a—+c a—cC

T _opa?s [ _x=xy? _ Gebx)?
b(t,x) = \ 20z € 2Da t/ dx’ bo(x") [e 8DF — g~ 8D
0

—> particle-density p(t) = — 6E(t,x)|,_, becomes for large times

tsoo  QC
p(t) " =° otc +0 (t*1/2 exp (—2Da2t))

stationary density p.. depends monotonously on o ~ /r

e*CX)



B) CDPR in the continuum, with extra input () 2y A

solve equation of motion, with boundary conditions E(t,0) = 1, E(t,00) =0

0tE(t,x) = 2D8§E(t,x) — )\XE(t,X) — rE(t7X) —|— rF(X)

let | = 55, 8% =

= stationary part f(x) obeys

2D , decompose E(t,x) = f(x) + b(t, x)

f”(x)—63(X—|—,u)f(x)—|—2a2F(x):0 ; f(0)=2, f(0)=0

with an explicitly known solution in terms of Airy functions Ai, Bi.
stationary density po, has scaling form, ¢ : density of reset

AR )
P(uy) = lleAll (( )) —ny (Bi’(y) —Ai’(y)igg) /0de F(uY /)AL (Y +y)

dynamics : relax. time 2 = |a1|3% + r, with Ai(a) = 0, exponential approch to stat. state

T



= ‘non—monotonous dependence of po, on ¢, a, B ! ‘

interpretation : u =c/f ~

y = (a/B)? =

left panel F(x) = e~

u P(u,y)
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right panel F(x) = erfc (@cx)
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left : if u < uc~0.93, then uP(u,y) has a minimum at some y* # 0
if u> uc, then uP(u,y) increases monotonously with y
right : if u~0.70 - 0.75, then uP(u,y) has a maximum at some y* # 0



qualitatively similar for simulations on discrete chain, F(x) = e~
and two values of the input rate \,
p is the occupation probability of a site after reset
left panel A = 0.0008 right panel A = 0.04
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full lines : exact solution in the continuum



4. Interparticle distribution function (IPDF)

on discrete chain D, : proba. that distance to nearest particle is n

in the continuum limit :

D D(x) =
= D) 2000 OX?

1 0%f(x)

several examples of the stationary empty-interval probability E (oo, x)

and the stationary 1PDF D(x);

for later comparison in systems with a reset :

system E (o0, x) D(x)
(a) uncorrelated exp(—cx) cexp(—cx)
(b) coagulation-diffusion | erfc(3v/mcx)  dmc?xexp (—Fc?x?)
(c) with particle-input Ai(Bx)/Ai(0) B°xAi(Bx)/|Ai’(0)]




A) 1PDF without input = scaling form
D(x) = aD(&, v), with € :== cx and v := a/c

oo 2 [ () 5[ for (D)oo [are () [Fars (2) o]

right panel : F(x) = erfc (%\/‘n CX)
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small interval size ¢ : local correlations, according to micro-dynamics

large interval size & : correlations remain those imposed by reset



B) 1PDF with input = scaling form

D(x) =

62

o0

(& uy), &=

Bx,

with an explicitly known scaling function.

left panel :
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5. Conclusions

stochastic reset brings systems out of detailed balance in a new, yet
unexplored way

find new types of non-equilibrium stationary states

rapid relaxation with a finite relaxation time 7 < co

if CDPR and also input, find unexpected non-trivial dependence of
particle density on reset and input rates

CDPR is first example of interacting many-body system with a reset
physical picture : the reset rate r introduces a new time scale 7, ~ o~
and a new length scale &, ~ a .

&, separates un-modified dynamics for scales < &,

and reset distribution for scales = &,.

2

Open question : can one use this as an efficient means to rapidly relax
a system to its stationary state?



