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1. Motivation
Question : new aspects in behaviour of interacting many-body systems ?

use exactly solvable models as paradigms for fresh insight and as
reference examples for further numerical study

non-equilibrium setting : master equation for the probability distribution

P({σ}; t) of a configuation {σ}

∂

∂t
P({σ}; t) =

∑
{σ′}

[
w(σ′ → σ)P({σ′}; t)− w(σ → σ′)P({σ}; t)

]
If detailed balance condition, with Peq({σ}) = limt→∞ P({σ}; t)

w(σ → σ′)Peq({σ}) = w(σ′ → σ)Peq({σ′}; t)

then relaxion towards equilibrium !
No probability currents between equilibrium configurations {σ}, {σ′}.



three ways (2 old, 1 new) how to break detailed balance
=⇒ non-equilibrium stationary state

(a) probability currents, through coupling to external engines
(b) absorbing stationary states
(c) extra probability currents through resets

first case study : single random walk with reset Evans & Majumdar 11

may lead to improved search algorithms

here : interacting many-body system with reset CDPR
= Coagulation-Diffusion Process with a stochastic Reset



2. Single random walk with a reset, in 1D
Evans & Majumdar ’11 arxiv:1102.2704

random walk of a single particle,
sent back to its initial position x0 with probability r at each step

without reset
(∂t − D∂2

x )P(t, x) = 0

P(t, x) = (2πσ2)−1/2 exp
[
− (x−x0)2

2σ2

]
gaussian

with reset rate r > 0
(∂t − D∂2

x )P(t, x) =
−rP(t, x) + rδ(x − x0)

P(∞, x) = α
2 exp [−α|x − x0|]

laplacian
α2 = r/D



3. Coagulation-diffusion process with a reset

‘coagulation’ reaction : 2A
D−→ A, diffusion : A + ∅ D←→ ∅+ A

method of empty intervals : ben Avraham, Burschka, Doering 90,. . .

probability of n consecutive empty sites : En(t) = P( n ; t)

=⇒ closed equation of motion ! continuum limit En(t)→ E (t, x)

(∂t − 2D∂2
x )E (t, x) = 0 ; E (t, 0) = 1 , E (t,∞) = 0

treat non-standard boundary conditions by analytic continuation to x < 0 :

E (t,−x) := 2− E (t, x) Durang, Fortin, mh . . . ’10

=⇒ slow, algebraic, decay of particle density

ρ(t) = − ∂xE (t, x)|x=0 ∼ t−α , α =
1

2
α measured in exciton kinetics on 1D polymers/carbon nano-tubes 1989-2013

C10H8 : 0.52− 0.59, PMMA : 0.47(3), TMMC : 0.48(4), Cnano : 0.51(3)
Kopelman et al. ; Kroon et al. ; Russo et al. ; Srivastava & Kono ; Allam et al.



define the CDPR on a lattice :

1. select a reset configuration, described by empty-interval probabilities Fn
Example : if each site is occupied with proba. p ⇒ Fn = (1− p)n

cont. limit : Fn → F (x) = e−cx with c = − ln(1− p) ' p + O(p2)

2. take a chain with N sites, 1 sweep := N steps of micro dynamics
3. in each step, a single particle either hops to a nearest neighbour,

with proba. Pd = Pg = D/(2D + r/N )

or else the system is reset to the distribution Fn
with proba. Pr = (r/N )/(2D + r/N ).

continuum limit : have for the empty-interval probabilities En(t)→ E (t, x)

(∂t − 2D∂2
x )E (t, x) = r (F (x)− E (t, x)) ; E (t, 0) = 1 , E (t,∞) = 0

quite analogous to master equation of a single random walk with reset !



to test the equation of motion :
solve them explicitly on the discrete lattice and compare with simulations

particle density : ρ(t) = 1− E1(t) left panel, p = 0.5

pair density : p(t) = 1− 2E1(t) + E2(t) right panel

perfect agreement between analytical and numerical methods
in general exponential approach towards ρ(∞) 6= 0, p(∞) 6= 0



A) CDPR in the continuum
In the continuum limit, solve equation of motion

∂tE (t, x) = 2D∂2
xE (t, x)− rE (t, x) + rF (x) , E (t, 0) = 1 , E (t,∞) = 0

via the decompostion E (t, x) = 1
2 f (x) + b(t, x) such that

f ′′(x)− α2f (x) + 2α2F (x) = 0 ; f (0) = 2 , f (∞) = 0

∂tb(t, x)− 2D∂2
xb(t, x) + rb(t, x) = 0 ; b(t, 0) = b(t,∞) = 0

where α2 := r/(2D). The solutions are (with b0(x) = E0(x)− 1
2
f (x), F (x) = e−cx)

f (x) =

(
2− α

α+ c

)
e−αx +

α

α+ c
e−cx +

α

α− c

(
e−(c−α)x − 1

)
e−αx

b(t, x) =

√
π

2Dt
e−2Dα2t

∫ ∞
0

dx ′ b0(x
′)

[
e−

(x−x′)2

8Dt − e−
(x+x′)2

8Dt

]
=⇒ particle-density ρ(t) = − ∂xE(t, x)|x=0 becomes for large times

ρ(t)
t→∞' αc

α + c
+ O

(
t−1/2 exp

(
−2Dα2t

))
=⇒ stationary density ρ∞ depends monotonously on α ∼

√
r



B) CDPR in the continuum, with extra input ∅ λ−→ A
solve equation of motion, with boundary conditions E(t, 0) = 1, E(t,∞) = 0

∂tE (t, x) = 2D∂2
xE (t, x)− λxE (t, x)− rE (t, x) + rF (x)

let α2 := r
2D , β3 := λ

2D , µ := α2

β3 = r
λ , decompose E(t, x) = 1

2
f (x) + b(t, x)

=⇒ stationary part f (x) obeys

f ′′(x)− β3(x + µ)f (x) + 2α2F (x) = 0 ; f (0) = 2 , f (∞) = 0

with an explicitly known solution in terms of Airy functions Ai , Bi .
=⇒ stationary density ρ∞ has scaling form, c : density of reset

ρ∞ = −1

2

∂f (x)

∂x

∣∣∣∣
x=0

= cP

(
c

β
, βµ

)
P(u, y) = −1

u

Ai ′(y)

Ai (y)
− πy

(
Bi ′(y)−Ai ′(y)

Bi (y)

Ai (y)

)∫ ∞
0

dY F (uY /c)Ai (Y + y)

dynamics : relax. time 1
τ = |a1|β2 + r , with Ai (a1) = 0, exponential approch to stat. state



=⇒ non-monotonous dependence of ρ∞ on c , α, β !

interpretation : u = c/β ≈ density of reset
stat. density without reset

,

y = (α/β)2 = scaled reset rate
scaled input rate

left panel F (x) = e−cx right panel F (x) = erfc
(√

π
2

cx
)

left : if u < uc ' 0.93, then uP(u, y) has a minimum at some y∗ 6= 0
if u > uc , then uP(u, y) increases monotonously with y

right : if u ≈ 0.70− 0.75, then uP(u, y) has a maximum at some y∗ 6= 0



qualitatively similar for simulations on discrete chain, F (x) = e−cx

and two values of the input rate λ,
p is the occupation probability of a site after reset

left panel λ = 0.0008 right panel λ = 0.04

full lines : exact solution in the continuum



4. Interparticle distribution function (ipdf)

on discrete chain Dn : proba. that distance to nearest particle is n

in the continuum limit : Dn → D(x) =
1

2ρ∞

∂2f (x)

∂x2

several examples of the stationary empty-interval probability E (∞, x)
and the stationary ipdf D(x) ;
for later comparison in systems with a reset :

system E (∞, x) D(x)

(a) uncorrelated exp(−cx) c exp(−cx)
(b) coagulation-diffusion erfc ( 1

2

√
π cx) 1

2πc
2 x exp

(
−π

4 c
2x2
)

(c) with particle-input Ai (βx)/Ai (0) β2xAi (βx)/|Ai ′(0)|



A) ipdf without input =⇒ scaling form
D(x) = αD(ξ, v), with ξ := cx and v := α/c

D(ξ, v) =
α

ρ∞

[
e−vξ − F

(
ξ

c

)
+

v

2

[∫ ξ

0
dY F

(
Y

c

)
ev(Y−ξ) +

∫ ∞
ξ

dY F

(
Y

c

)
ev(ξ−Y ) −

∫ ∞
0

dY F

(
Y

c

)
e−v(Y+ξ)

]]

left panel : F (x) = e−cx right panel : F (x) = erfc
(

1
2

√
π cx

)

small interval size ξ : local correlations, according to micro-dynamics
large interval size ξ : correlations remain those imposed by reset



B) ipdf with input =⇒ scaling form

D(x) =
β2

ρ∞
D(ξ, u, y) , ξ := βx , u := c/β , y := βµ

with an explicitly known scaling function.

left panel : F (x) = e−cx , u = 0.1 right panel : F (x) = erfc
(

1
2

√
π cx

)
, u = 0.1



5. Conclusions

stochastic reset brings systems out of detailed balance in a new, yet
unexplored way

find new types of non-equilibrium stationary states
rapid relaxation with a finite relaxation time τ <∞
if CDPR and also input, find unexpected non-trivial dependence of

particle density on reset and input rates

CDPR is first example of interacting many-body system with a reset
physical picture : the reset rate r introduces a new time scale τr ∼ α−2,
and a new length scale ξr ∼ α−1.
ξr separates un-modified dynamics for scales . ξr
and reset distribution for scales & ξr .

Open question : can one use this as an efficient means to rapidly relax
a system to its stationary state ?


