The Kosterlitz-Thouless transition in thin films: Monte Carlo simulations of 3D lattice models

Martin Hasenbusch

Institut für Physik, Humboldt-Universität zu Berlin

CompPhys13, 29 November 2013

The Kosterlitz-Thouless transition in thin films: Monte Carlo simulations of 3D lattice models

Martin Hasenbusch

Overview

- The Kosterlitz-Thouless transition
- ▶ 2D finite size scaling of Υ , ξ_{2nd}/L and U_4
- Numerical results for films, 3D finite size scaling
- Comparison with experiments on films of ⁴He

2D XY-model on the square lattice

$$H = -\beta \sum_{\langle x,y \rangle} \vec{s}_x \vec{s}_y$$

where the spin \vec{s}_x is unit-vector with two real components. < xy > is a pair of nearest neighbour sites on the lattice.

Theorem of Mermin and Wagner (1966): No long range order

Spin-wave approximation: Gaussian approximation of the reduced Hamiltonian

$$H_{SW} = \frac{\beta_{SW}}{2} \sum_{\langle x, y \rangle} (\phi_x - \phi_y)^2$$

where $\vec{s}_x = (\cos \phi_x, \sin \phi_x)$. The two-point function behaves as

$$G(x-y) = \langle \vec{s}_x \vec{s}_y \rangle_{SW} \propto |x-y|^{-\eta}$$

The Kosterlitz-Thouless transition in thin films: Monte Carlo simulations of 3D lattice models

with $\eta = \frac{1}{2\pi\beta cm}$

Berezinskii (1971), Kosterlitz and Thouless (1973):

At sufficiently high temperatures vortices alter the physics

The Kosterlitz-Thouless transition in thin films: Monte Carlo simulations of 3D lattice models

Martin Hasenbusch

Analysis of the renormalization group (RG) flow

 $x = \pi \beta_{SW} - 2$; y (related with chemical potential for vortices)

The flow equations:

$$\frac{\mathrm{d}x}{\mathrm{d}l} = -y^2$$
$$\frac{\mathrm{d}y}{\mathrm{d}l} = -xy$$

where $l = \ln a$ is the logarithm of the cut-off scale. The solutions satisfy $x^2 - y^2 = const$

The correlation length in the high temperature phase

$$\xi \simeq a \exp(bt^{-1/2}) ~~,~~ t = rac{eta_{\kappa au} - eta}{eta_{\kappa au}}$$

The magnetic susceptibility in the high temperature phase

$$\chi \simeq \xi^{2-\eta}$$

with $\eta = 1/4$.

Singular part of free energy density

$$f_s \propto \xi^{-2} \propto \exp(-2bt^{-1/2})$$

 $\partial^n f_s / \partial t^n$ at t = 0 exits for any $n \Rightarrow$ KT-transition is of infinite order

BCSOS model (van Beijeren 1977): $H_{BSOS} = \beta_{BSOS} \sum_{[xy]} |h_x - h_y|$ where [xy] is a pair of next-to-nearest neighbours. Constraint on nearest neighbours: $|h_x - h_y| = 1$.

Equivalent to the exactly solved F model (Lieb 1967)

$$\beta_{BSOS,KT} = \frac{1}{2}\ln 2 \quad ; \quad \xi \simeq \frac{1}{4} \exp\left(\frac{\pi^2}{8\sqrt{\frac{1}{2}\ln 2}} \left(\frac{\beta_{BSOS} - \beta_{BSOS,KT}}{\beta_{BSOS,KT}}\right)^{-\frac{1}{2}}\right)$$

Numerical matching of SOS models with the BCSOS at the KT-transition, Hasenbusch and Pinn (1997)

 $\beta_{XY,KT} = 1.1199(1) \qquad b_{XY,BCSOS} = L_{XY}/L_{BCSOS} = 0.93(1)$ $\beta_{DG,KT} = 0.6653(2) \qquad b_{DG,BCSOS} = 0.32(1)$ $\beta_{ASOS,KT} = 0.80608(2) \qquad b_{ASOS,BCSOS} = 2.78(3)$

Finite size scaling at the KT-transition

- Compute dimensionless quantities Υ , Z_a/Z_p , ξ/L , U_4 , ... in spin-wave approximation

- Put in $\beta_{sw} = \frac{2}{\pi} + \frac{1}{\pi} \frac{1}{\ln L + C}$ where we identify the lattice size *L* as the relevant length scale Vicari, Pelisetto, Phys.Rev. E87 (2013) 3, 032105 $\beta_{sw} = \frac{2}{\pi} + \frac{1}{\pi} \frac{1}{\ln L/l_0 + \frac{1}{2} \ln \ln L/l_0}$

-Note that for periodic boundary conditions y enters the observables only at $O(y^2)$. Error $O((\ln L/l_0)^{-2})$

Lattice of the size L^2 with periodic boundary conditions: Well known behaviour of the helicity modulus

 $\Upsilon|_{L^2, transition} = 0.63650817819... + \frac{0.318899454...}{\ln L + C}$

(Note $2/\pi = 0.63661977236...$) (M.H. 2005): Second moment correlation length

$$\frac{\xi_{2nd}}{L}\Big|_{L^2, transition} = 0.7506912... + \frac{0.212430...}{\ln L + C} + \dots .$$

(M.H. 2008): Binder cumulant $U_4 = \langle (\vec{m}^2)^2 \rangle / \langle \vec{m}^2 \rangle^2$

$$U_{4,L^2,transition} = 1.018192(6) - \frac{0.017922(5)}{\ln L + C} + \dots,$$

Dual of ASOS model at $\tilde{\beta} = 0.80608$ and $L_{min} = 96$: (M.H. 2008)

$$U_{4,ASOS}(L) = 1.018192 - \frac{0.017922}{\ln L - 1.18} + \frac{0.06769}{(\ln L - 1.18)^2}$$

$$\frac{\xi_{2nd,ASOS}(L)}{L} = 0.7506912 + \frac{0.212430}{\ln L + 0.573}$$

2-component ϕ^4 model:

$$H = -\beta \sum_{x,\mu} \vec{\phi}_x \vec{\phi}_{x+\hat{\mu}} + \sum_x \left[\vec{\phi}_x^2 + \lambda (\vec{\phi}_x^2 - 1)^2 \right]$$

where the field variable $\vec{\phi}_x$ is a vector with 2 real components. x is a site on a simple cubic lattice and $\hat{\mu}$ a unit vector in μ direction.

The correlation length behaves as

$$\xi=\xi_{0,\pm}(\lambda) \ |t|^{-
u} \ \ (1+c(\lambda)t^ heta+...)$$

where $t = \beta_c - \beta$ is the reduced temperature, $\nu = 0.6717(1)$ (Campostrini et al. 2006) is the exponent of the correlation length and $\theta = \nu\omega \approx 0.5$ the exponent of the leading correction. The helicity modulus $\Upsilon = 1/\xi_T$ is defined in the low temperature phase. ξ_T is the transversal correlation length.

$$\lim_{t \to 0} \xi_{2nd}(t) \Upsilon(-t) = 0.411(2)$$

The improved model: $c(\lambda^*) = 0$ (Idea: Chen, Fisher, Nickel 1982) Numerically (Campostrini et al. 2006): $\lambda^* = 2.15(5)$

Here we study $\lambda = 2.1$:

 $\beta_c = 0.5091503(6)$ $\xi_{0,+} = 0.26362(8)$

 $\left|\frac{c(2.1)}{c(XY)}\right| \lesssim \frac{1}{30}$

Film geometry:

System is finite in one direction and infinite in the other two In our simulations: $L_0 \ll L_1 = L_2$

free boundary conditions: relevant for films of ⁴He in the neighbourhood of the λ -transition

Corrections $\propto L_0^{-1}$ (Capehart and Fisher 1976, Diehl, Dietrich and Eisenriegler 1983); Can be cast into the form $L_{0,eff} = L_0 + L_s$. For our model $L_s = 1.02(7)$.

Results of the matching:

$$b_{ASOS,film} = L_{ASOS}(L_0 + L_s)/L$$

= 5.0(5)

L ₀	β_{KT}		
4	0.60968(1)[1]		
6	0.56825(1)[1]		
8	0.549278(5)[9]		
12	0.532082(3)[5]		
16	0.524450(2)[3]		
24	0.517730(2)[2]		
32	0.514810(1)[2]		
∞	0.5091503(6)		

Ansatz (motivated by Fisher 1971) $\beta_{KT}(L_0) - \beta_{c,3D} = a[L_0 + L_s]^{-1/\nu} \times (1 + c[L_0 + L_s]^{-1/\nu})$

L _{0,min}	а	Ls	С	χ^2/DOF
4	1.0321(11)	1.158(29)	1.38(11)	3.80
6	1.0286(13)	1.037(36)	0.90(13)	0.39
8	1.0284(18)	1.030(59)	0.87(23)	0.57

Comparison of our result $L_{0,KT}/\xi_{\perp} = 1.595(7)$ with experimental results for films of ⁴He, $T_{\lambda} \approx 2.17$ K

Sabisky and Anderson, Phys. Rev. Lett. **30** 1122, (1973) KT-thickness determined by the onset of superfluidity. Using films on a CaF₂ substrate of a thickness up to ≈ 80 Å they find

$$L_{0,KT} = 5.1(1 - T/T_{\lambda})^{-2/3} \text{\AA}$$
; $\Upsilon L_{0,KT} \approx 1.545$

van de Laar, van der Hoek and van Beelen, Physica B **216** 24, (1995) have studied films of a thickness up to 47Å with glass as substrate. They quote the final result

 $L_{0,KT} = 0.43 \text{\AA} + 1.61 \xi_{\perp}$

Note that more recent experiment by Gasparini et al. with thicker films match less well.

Conclusions:

- Properties of the KT-transition theoretically well established
- At the KT-transition: Logarithmic corrections have to be taken into account in a Monte Carlo study: Exact results for FSS of Y , *ξ*_{2nd}/*L*, and *U*₄
- We have accurately determined the transition temperature of thin films in the 3D XY universality class We confilm the KT-nature of the transition
- The KT-temperature scales as predicted by 3D finite size scaling (Fisher 1971, Barber 1983)
- Corrections ∝ L₀⁻¹ can be described by replacing L₀ by L_{0,eff} = L₀ + L_s
- Our result L_{0,KT}/ξ_⊥ = 1.595(7) is nicely consistent with that for thin films of ⁴ He

M. Hasenbusch,

Kosterlitz-Thouless transition in thin films: A Monte Carlo study of three-dimensional lattice models arXiv:0811.2178 [cond-mat], J. Stat. Mech. (2009) P02005 and refs. therein

I like to thank W Janke for support. The project was funded by the DFG under grant No. JA 483/23-1.