http://arxiv.org/abs/1309.1634

Boundary effects in interface growth processes

Nicolas Allegra (Groupe de physique statistique, IJL Nancy) work done with Malte Henkel and Jean-Yves Fortin.

November 29, 2013

Outline

2 Edwards-Wilkinson equation and boundary effects

3 Kardar-Parisi-Zhang equation and boundary effects

Random surface

Random deposition

- Deposition of particles randomly on the substrate (no diffusion)
- Creation of a random uncorrelated interface

Random surface

Random deposition

- Deposition of particles randomly on the substrate (no diffusion)
- Creation of a random uncorrelated interface

Random surface

Random deposition

- Deposition of particles randomly on the substrate (no diffusion)
- Creation of a random uncorrelated interface

Brownian interface

- $\frac{\partial h(x,t)}{\partial t} = F + \eta(x,t)$
- Gaussian white noise $\langle \eta(x,t)\eta(x',t')\rangle = 2T\delta(x-x')\delta(t-t')$
- Solution $\rightarrow h(\mathbf{x}, \mathbf{t}) = Ft + \int dt_1 \eta(\mathbf{x}, t_1)$

Family model and EW equation

Deposition relaxation process (Family Model) and discrete Langevin equation

$$\begin{split} \frac{dh_i}{dt} &= \Gamma a \Big(\omega_i^{(0)} + \omega_{i+1}^{(g)} + \omega_{i-1}^{(d)} \Big) + \eta_i(t) \\ \bullet \ \omega_i^0 &= \theta_{i+1,i} \theta_{i-1,i} \\ \bullet \ \omega_i^g &= \theta_{i+1,i} \hat{\theta}_{i-1,i} + \frac{1}{2} \hat{\theta}_{i-1,i} \hat{\theta}_{i+1,i} \\ \bullet \ \omega_i^d &= \theta_{i-1,i} \hat{\theta}_{i+1,i} + \frac{1}{2} \hat{\theta}_{i+1,i} \hat{\theta}_{i-1,i} \\ \text{with} \ \theta_{i\pm 1,i} &= \theta(h_{i\pm 1} - h_1) \text{ and } \hat{\theta} = 1 - \theta \end{split}$$

Family model and EW equation

$$\begin{split} \frac{dh_{i}}{dt} &= \Gamma a \Big(\omega_{i}^{(0)} + \omega_{i+1}^{(g)} + \omega_{i-1}^{(d)} \Big) + \eta_{i}(t) \\ &\bullet \ \omega_{i}^{0} &= \theta_{i+1,i} \theta_{i-1,i} \\ &\bullet \ \omega_{i}^{g} &= \theta_{i+1,i} \hat{\theta}_{i-1,i} + \frac{1}{2} \hat{\theta}_{i-1,i} \hat{\theta}_{i+1,i} \\ &\bullet \ \omega_{i}^{d} &= \theta_{i-1,i} \hat{\theta}_{i+1,i} + \frac{1}{2} \hat{\theta}_{i+1,i} \hat{\theta}_{i-1,i} \\ &\text{with} \ \theta_{i\pm 1,i} &= \theta(h_{i\pm 1} - h_{1}) \text{ and } \hat{\theta} = 1 - \theta \end{split}$$

Continuum limit and the Edwards-Wilkinson equation

$$\frac{\mathrm{d}h_i}{\mathrm{d}t} = \Gamma a M_i^0 + \eta_i(t) \to \frac{\partial h(x,t)}{\partial t} = \nu \frac{\partial^2 h(x,t)}{\partial^2 x} + \eta(x,t) \tag{1}$$

• Solution $\rightarrow h(\mathbf{x}, \mathbf{t}) = \int d\mathbf{t}_1 \int d\mathbf{x}_1 \ \eta(\mathbf{x}_1, \mathbf{t}_1) \mathbf{K}(\mathbf{x} - \mathbf{x}_1, \mathbf{t} - \mathbf{t}_1)$

• Heat Kernet: $K(x,t) := \exp(-x^2/4t)/\sqrt{4\pi t}$

Interface growth process

Fluctuations and the Family-Vicsek scaling 991)

width of the interface
$$\rightarrow w(t, x) := \left\langle [h(t, x) - \langle h(t, x) \rangle]^2 \right\rangle^{1/2}$$
 (2)

$$w_L(t) = \overline{w(t,x)} = t^{\beta} f\left(Lt^{-1/z}\right), \ f(u) \sim \begin{cases} u^{\alpha} & \text{if } u \ll 1\\ \text{cste} & \text{if } u \gg 1 \end{cases} \text{ with } z = \alpha/\beta.$$
(3)

Critical exponents
$$\rightarrow z = 2$$
 and $\alpha = \frac{z - d}{2} \rightarrow EW$ universality class (4)

Interface growth process

Fluctuations and the Family-Vicsek scaling 991)

width of the interface
$$\rightarrow w(t, x) := \left\langle [h(t, x) - \langle h(t, x) \rangle]^2 \right\rangle^{1/2}$$
 (2)

$$w_{L}(t) = \overline{w(t,x)} = t^{\beta} f\left(Lt^{-1/z}\right), \ f(u) \sim \begin{cases} u^{\alpha} & \text{if } u \ll 1\\ \text{cste} & \text{if } u \gg 1 \end{cases} \text{ with } z = \alpha/\beta.$$
(3)

Critical exponents
$$\rightarrow z = 2$$
 and $\alpha = \frac{z-d}{2} \rightarrow EW$ universality class (4)

Interface growth and Family-Viczek scaling

Boundary interface growth process

- What happens to the mean profile of the interface ?
- Fluctuation close to boundary vs far from the boundary ?

Interface growth and Family-Viczek scaling

Boundary interface growth process

- What happens to the mean profile of the interface ?
- Fluctuation close to boundary vs far from the boundary ?

Modification of the process close to a hard wall

- semi-infinite lattice i = 1, 2...
- Hard wall: $h_0 > h_1$

- Wall acts like an infinite energy barrier
- new exponents ? \rightarrow new universality classes ?
- new phase transitions ?

From the microscopic process to a continuum equation

$$\tilde{\omega}_1^0 = \theta_{21}(1-\epsilon) = \mathcal{O}(1) \tag{5}$$

$$\tilde{\omega}_1^d = (1-\epsilon)\hat{ heta}_{21} + rac{\epsilon}{2}\hat{ heta}_{21} = \mathcal{O}(1)$$
 (6)

$$\tilde{\omega}_1^g \sim \tilde{\omega}_0^d \sim \mathcal{O}(\epsilon)$$
 (7)

From the microscopic process to a continuum equation

Discrete Langevin equation

$$\tilde{\omega}_1^0 = \theta_{21}(1-\epsilon) = \mathcal{O}(1) \tag{5}$$

$$ilde{\omega}_1^d = (1-\epsilon)\hat{ heta}_{21} + rac{\epsilon}{2}\hat{ heta}_{21} = \mathcal{O}(1) \quad (6)$$

$$\tilde{\omega}_1^g \sim \tilde{\omega}_0^d \sim \mathcal{O}(\epsilon)$$
 (7)

•
$$\frac{\mathrm{d}h_1}{\mathrm{d}t} = \Gamma a \Big[\tilde{\omega}_1^0 + \omega_2^g \Big] + \eta_1(t) = \Gamma a \Big[\omega_1^0 + \omega_2^g + \omega_0^d + (\tilde{\omega}_1^0 - \omega_1^0) \Big] + \eta_1(t)$$

From the microscopic process to a continuum equation

Discrete Langevin equation

$$\tilde{\omega}_1^0 = \theta_{21}(1-\epsilon) = \mathcal{O}(1) \tag{5}$$

$$ilde{\omega}^{\boldsymbol{d}}_1 = (1-\epsilon)\hat{ heta}_{21} + rac{\epsilon}{2}\hat{ heta}_{21} = \mathcal{O}(1) \quad (6)$$

$$\tilde{\omega}_1^g \sim \tilde{\omega}_0^d \sim \mathcal{O}(\epsilon) \tag{7}$$

•
$$\frac{\mathrm{d}h_1}{\mathrm{d}t} = \Gamma a \left[\tilde{\omega}_1^0 + \omega_2^g \right] + \eta_1(t) = \Gamma a \left[\omega_1^0 + \omega_2^g + \omega_0^d + (\tilde{\omega}_1^0 - \omega_1^0) \right] + \eta_1(t)$$

•
$$\frac{\mathrm{d}h_2}{\mathrm{d}t} = \Gamma a \left[\omega_2^0 + \omega_3^g + \tilde{\omega}_1^d \right] + \eta_2(t) = \Gamma a \left[\omega_2^0 + \omega_3^g + \omega_1^d + (\tilde{\omega}_1^d - \omega_1^d) \right] + \eta_2(t)$$

From the microscopic process to a continuum equation

Discrete Langevin equation

$$\tilde{\omega}_1^0 = \theta_{21}(1-\epsilon) = \mathcal{O}(1) \tag{5}$$

$$ilde{\omega}^{\boldsymbol{d}}_1 = (1-\epsilon)\hat{ heta}_{21} + rac{\epsilon}{2}\hat{ heta}_{21} = \mathcal{O}(1) \quad (6)$$

$$\tilde{\omega}_1^g \sim \tilde{\omega}_0^d \sim \mathcal{O}(\epsilon) \tag{7}$$

•
$$\frac{dh_{1}}{dt} = \Gamma a \left[\tilde{\omega}_{1}^{0} + \omega_{2}^{g} \right] + \eta_{1}(t) = \Gamma a \left[\omega_{1}^{0} + \omega_{2}^{g} + \omega_{0}^{d} + (\tilde{\omega}_{1}^{0} - \omega_{1}^{0}) \right] + \eta_{1}(t)$$

•
$$\frac{dh_{2}}{dt} = \Gamma a \left[\omega_{2}^{0} + \omega_{3}^{g} + \tilde{\omega}_{1}^{d} \right] + \eta_{2}(t) = \Gamma a \left[\omega_{2}^{0} + \omega_{3}^{g} + \omega_{1}^{d} + (\tilde{\omega}_{1}^{d} - \omega_{1}^{d}) \right] + \eta_{2}(t)$$

•
$$\frac{dh_{i>2}}{dt} = \Gamma a \left[\omega_{i}^{0} + \omega_{i+1}^{g} + \omega_{i-1}^{d} \right] + \eta_{i}(t) = \Gamma a M_{i}^{(0)} + \eta_{i}(t)$$

From the microscopic process to a continuum equation

Discrete Langevin equation

$$\tilde{\omega}_1^0 = \theta_{21}(1-\epsilon) = \mathcal{O}(1) \tag{5}$$

$$\tilde{\omega}_1^d = (1-\epsilon)\hat{\theta}_{21} + \frac{\epsilon}{2}\hat{\theta}_{21} = \mathcal{O}(1) \quad (6)$$

$$\tilde{\omega}_1^g \sim \tilde{\omega}_0^d \sim \mathcal{O}(\epsilon)$$
 (7)

Discrete Langevin equation

•
$$\frac{dh_{1}}{dt} = \Gamma a \Big[\tilde{\omega}_{1}^{0} + \omega_{2}^{g} \Big] + \eta_{1}(t) = \Gamma a \Big[\omega_{1}^{0} + \omega_{2}^{g} + \omega_{0}^{d} + (\tilde{\omega}_{1}^{0} - \omega_{1}^{0}) \Big] + \eta_{1}(t)$$

•
$$\frac{dh_{2}}{dt} = \Gamma a \Big[\omega_{2}^{0} + \omega_{3}^{g} + \tilde{\omega}_{1}^{d} \Big] + \eta_{2}(t) = \Gamma a \Big[\omega_{2}^{0} + \omega_{3}^{g} + \omega_{1}^{d} + (\tilde{\omega}_{1}^{d} - \omega_{1}^{d}) \Big] + \eta_{2}(t)$$

•
$$\frac{dh_{i>2}}{dt} = \Gamma a \Big[\omega_{i}^{0} + \omega_{i+1}^{g} + \omega_{i-1}^{d} \Big] + \eta_{i}(t) = \Gamma a M_{i}^{(0)} + \eta_{i}(t)$$

$$\frac{\mathrm{d}h_i}{\mathrm{d}t} = \mathsf{Fa}\Big[M_i^{(1)} + \Delta\tilde{\omega}_1^{(0)}\delta_{i,1} + \Delta\tilde{\omega}_1^{(d)}\delta_{i,2}\Big] + \eta_i(t) \text{ for } i = 1, 2, 3...$$
(8)

Continuum formulation

Boundary Edwards Wilkinson equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \Big(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \Big|_{x=0} \Big) \delta(x) + \eta \quad x \in \mathbb{R}^+$$
(9)

Continuum formulation

Boundary Edwards Wilkinson equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \Big(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \Big|_{x=0} \Big) \delta(x) + \eta \quad x \in \mathbb{R}^+$$
(9)

Tasks

Scaling approach

Continuum formulation

Boundary Edwards Wilkinson equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \Big(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \Big|_{x=0} \Big) \delta(x) + \eta \quad x \in \mathbb{R}^+$$
(9)

- Scaling approach
- Solve the linear equation

$$\left| \frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \left(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \Big|_{x=0} \right) \delta(x) + \eta \right| \quad \mu_2 = 1$$
(10)

Continuum formulation

Boundary Edwards Wilkinson equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \Big(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \Big|_{x=0} \Big) \delta(x) + \eta \quad x \in \mathbb{R}^+$$
(9)

Tasks

- Scaling approach
- Solve the linear equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \left(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \big|_{x=0} \right) \delta(x) + \eta \qquad \mu_2 = 1 \tag{10}$$

• Calculation of the exact mean profile $\langle h(t,x) \rangle$

Continuum formulation

Boundary Edwards Wilkinson equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \Big(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \Big|_{x=0} \Big) \delta(x) + \eta \quad x \in \mathbb{R}^+$$
(9)

- Scaling approach
- Solve the linear equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \left(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \big|_{x=0} \right) \delta(x) + \eta \qquad \mu_2 = 1 \tag{10}$$

- Calculation of the exact mean profile $\langle h(t,x) \rangle$
- Calculation of fluctuations $w(t,x) = \left\langle \left[h(t,x) \langle h(t,x) \rangle \right]^2 \right\rangle^{1/2}$

Continuum formulation

Boundary Edwards Wilkinson equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \Big(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \Big|_{x=0} \Big) \delta(x) + \eta \quad x \in \mathbb{R}^+$$
(9)

- Scaling approach
- Solve the linear equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \left(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \big|_{x=0} \right) \delta(x) + \eta \qquad \mu_2 = 1$$
(10)

- Calculation of the exact mean profile $\langle h(t,x) \rangle$
- Calculation of fluctuations $w(t,x) = \langle [h(t,x) \langle h(t,x) \rangle]^2 \rangle^{1/2}$
- Calculation of correlations $\left< \left[h(t,x) \left< h(t',x') \right>
 ight]^2 \right>^{1/2}$

Continuum formulation

Boundary Edwards Wilkinson equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \Big(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \Big|_{x=0} \Big) \delta(x) + \eta \quad x \in \mathbb{R}^+$$
(9)

- Scaling approach
- Solve the linear equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \left(\mu_1 + \mu_2 \frac{\partial h}{\partial x} \big|_{x=0} \right) \delta(x) + \eta \qquad \mu_2 = 1$$
(10)

- Calculation of the exact mean profile $\langle h(t,x) \rangle$
- Calculation of fluctuations $w(t,x) = \langle [h(t,x) \langle h(t,x) \rangle]^2 \rangle^{1/2}$
- Calculation of correlations $\left< \left[h(t,x) \left< h(t',x') \right>
 ight]^2 \right>^{1/2}$
- Compare to MC simulations

Scaling law of the mean profile of the interface

Hypothesis: scaling ansatz

$$\langle h(x,t) \rangle = t^{1/\gamma} \Phi(\lambda) \text{ with } \lambda = x t^{-1/z}$$
 (11)

Scaling law of the mean profile of the interface

Hypothesis: scaling ansatz

$$\langle h(x,t) \rangle = t^{1/\gamma} \Phi(\lambda) \text{ with } \lambda = x t^{-1/z}$$
 (11)

$$\frac{1}{z} + \frac{1}{\gamma} = 1 \text{ and } \frac{2}{z} = 1 \rightarrow \boxed{z = \gamma = 2}$$
(12)

$$\Phi^{\prime\prime}(\lambda) + \frac{\lambda^2}{2} \Phi^{\prime}(\lambda) - \frac{1}{2} \Phi(\lambda) = 0$$
(13)

Scaling law of the mean profile of the interface

Hypothesis: scaling ansatz

$$\langle h(x,t) \rangle = t^{1/\gamma} \Phi(\lambda) \text{ with } \lambda = x t^{-1/z}$$
 (11)

$$\frac{1}{z} + \frac{1}{\gamma} = 1$$
 and $\frac{2}{z} = 1 \rightarrow \boxed{z = \gamma = 2}$ (12)

$$\Phi^{\prime\prime}(\lambda) + \frac{\lambda^2}{2} \Phi^{\prime}(\lambda) - \frac{1}{2} \Phi(\lambda) = 0$$
(13)

Ansatz results

•
$$\langle h(x,t) \rangle = t^{1/2} \Phi(xt^{-1/2})$$

•
$$\Phi(\lambda) = \Phi_0 \left(e^{-\lambda} - \sqrt{\pi \lambda} \operatorname{erfc} \sqrt{\lambda} \right)$$

In agreement with simulations

Scaling law of the mean profile of the interface

Hypothesis: scaling ansatz

$$\langle h(x,t) \rangle = t^{1/\gamma} \Phi(\lambda) \text{ with } \lambda = x t^{-1/z}$$
 (11)

$$\frac{1}{z} + \frac{1}{\gamma} = 1 \text{ and } \frac{2}{z} = 1 \rightarrow \boxed{z = \gamma = 2}$$
(12)

$$\Phi^{\prime\prime}(\lambda) + \frac{\lambda^2}{2} \Phi^{\prime}(\lambda) - \frac{1}{2} \Phi(\lambda) = 0$$
(13)

Ansatz results

•
$$\langle h(x,t) \rangle = t^{1/2} \Phi(xt^{-1/2})$$

•
$$\Phi(\lambda) = \Phi_0 \left(e^{-\lambda} - \sqrt{\pi \lambda} \operatorname{erfc} \sqrt{\lambda} \right)$$

In agreement with simulations

 $\rightarrow~$ Comparison to the Exact solution

Laplace transform solution

Boundary EW equation is linear

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \left(\mu_1 + \frac{\partial h}{\partial x} \Big|_{x=0} \right) \delta(x) + \eta$$
(14)

Linear \to Laplace transform $\mathcal{L}_x.h(x,t) = h_p^*(t) = \int_{\mathbb{R}^+} \mathrm{d}x \ \mathrm{e}^{-px} h(x,t), \quad p \geqslant 0$

Laplace transform solution

Boundary EW equation is linear

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \nu \left(\mu_1 + \frac{\partial h}{\partial x} \Big|_{x=0} \right) \delta(x) + \eta$$
(14)

 $\label{eq:Linear} \mbox{Linear} \rightarrow \mbox{Laplace transform } \mathcal{L}_x. h(x,t) = h_p^*(t) = \int_{\mathbb{R}^+} \mathrm{d}x \ \mathrm{e}^{-px} h(x,t), \quad p \geqslant 0$

Solution

$$h(t,x) = \frac{1}{4\sqrt{\pi}} \int_{\lambda}^{\infty} \frac{\mathrm{d}v}{v^{3/2} e^{v}} \left[x\mu_1 + 2vh_0 \left(t - \frac{x^2}{4v} \right) \right] + \zeta(t,x)$$
(15)

where

$$h_0:=h(0,t)=2_1\sqrt{\tfrac{t}{\pi}}+\zeta(t,0) \quad \text{and} \quad \langle h(x,t)\rangle=t^{1/2}\tfrac{2\mu_1}{\pi}\Big(\mathrm{e}^{-\lambda}-\sqrt{\pi\lambda} \ \mathrm{erfc} \sqrt{\lambda}\Big)$$

$$\zeta(x,t) = \int_0^t \int_0^\infty d\tau du \ \mathrm{K}(x-u,t-\tau)\eta(u,\tau) \quad \to \langle \zeta \rangle = 0 \tag{16}$$
$$\langle \zeta(t,x)\zeta(t',x') \rangle = 2T \int_0^{\min(t,t')} d\tau \int_0^\infty du \ \mathrm{K}(x-u,t-\tau)\mathrm{K}(x'-u,t'-\tau) \tag{17}$$

Exact solution: Fluctuations of the interface w(x, t)

$$w^{2}(x,t) = w_{1}^{2}(t,x) + w_{2}^{2}(t,x) + w_{3}^{2}(t,x) = T\sqrt{t}\Phi_{w}(\lambda)$$

$$w_1^2(t,x) = \frac{1}{\pi} \iint_{\lambda}^{\infty} \frac{\mathrm{d}v \,\mathrm{d}v'}{(vv')^{1/2} e^{v+v'}} \left\langle \zeta\left(t - \frac{\lambda t}{v}, 0\right) \zeta\left(t - \frac{\lambda t}{v'}, 0\right) \right\rangle \tag{18}$$

$$w_2^2(t,x) = \frac{2}{\sqrt{\pi}} \int_{\lambda}^{\infty} \frac{\mathrm{d}v}{v^{1/2} e^v} \left\langle \zeta \left(t - \frac{\lambda t}{v}, 0 \right) \zeta \left(t, x \right) \right\rangle \tag{19}$$

$$w_3^2(t,x) = \left\langle \zeta^2(t,x) \right\rangle = \frac{T}{2\pi} \int_0^t \frac{\mathrm{d}\tau}{\tau} \int_0^\infty \mathrm{d}v \, \exp\left[-\frac{(x-v)^2}{2\tau}\right] \tag{20}$$

Exact solution: Fluctuations of the interface w(x, t)

$$w^{2}(x,t) = w_{1}^{2}(t,x) + w_{2}^{2}(t,x) + w_{3}^{2}(t,x) = T\sqrt{t}\Phi_{w}(\lambda)$$

$$w_1^2(t,x) = \frac{1}{\pi} \iint_{\lambda}^{\infty} \frac{\mathrm{d}v \,\mathrm{d}v'}{(vv')^{1/2} e^{v+v'}} \left\langle \zeta\left(t - \frac{\lambda t}{v}, 0\right) \zeta\left(t - \frac{\lambda t}{v'}, 0\right) \right\rangle \tag{18}$$

$$w_2^2(t,x) = \frac{2}{\sqrt{\pi}} \int_{\lambda}^{\infty} \frac{\mathrm{d}v}{v^{1/2} e^v} \left\langle \zeta \left(t - \frac{\lambda t}{v}, 0 \right) \zeta \left(t, x \right) \right\rangle \tag{19}$$

$$w_3^2(t,x) = \left\langle \zeta^2(t,x) \right\rangle = \frac{T}{2\pi} \int_0^t \frac{\mathrm{d}\tau}{\tau} \int_0^\infty \mathrm{d}v \, \exp\left[-\frac{(x-v)^2}{2\tau}\right] \tag{20}$$

Asymptotic expansion $\lambda \rightarrow 0$

$$w_1^2(t,x) \simeq T\sqrt{t} \left(\frac{1}{\sqrt{2\pi}} + +\log(2) - 2 + \log(\lambda) \right) \frac{\sqrt{\lambda}}{\pi} + O(\lambda^{3/2}) \right)$$
(21)

$$w_2^2(t,x) \simeq T\sqrt{t}2\sqrt{2\pi} - 2\sqrt{\lambda} + \lambda\frac{\pi}{2} + O(\lambda^2)$$
(22)

$$w_3^2(t,x) \simeq T\sqrt{t} \left(\frac{1}{\sqrt{2\pi}} - +\log(2) - 2 + \log(\lambda)\right) \frac{\sqrt{\lambda}}{\pi} + O(\lambda^{3/2})\right)$$
(23)

Figure : Width w(x, t) simulated by the deposition-relaxation algorithm

Figure : Effective correction $\beta_{\rm eff} \approx 0.32$ to the exponent $\beta = 1/4$.

Figure : Width w(x, t) simulated by the deposition-relaxation algorithm

Figure : Effective correction $\beta_{\rm eff} \approx 0.32$ to the exponent $\beta = 1/4$.

Width profile of the interface

• More complex behavior than the standard EW width $ightarrow w(t) \sim t^{1/4}$

Figure : Width w(x, t) simulated by the deposition-relaxation algorithm

Figure : Effective correction $\beta_{\rm eff} \approx 0.32$ to the exponent $\beta = 1/4$.

Width profile of the interface

- More complex behavior than the standard EW width $ightarrow w(t) \sim t^{1/4}$
- Conclusion $\rightarrow \beta_{eff} > \beta$ for 3 decades and $\beta_{eff} \rightarrow 1/4$ when $t \rightarrow \infty$

Figure : Width w(x, t) simulated by the deposition-relaxation algorithm

Figure : Effective correction $\beta_{\rm eff} \approx 0.32$ to the exponent $\beta = 1/4$.

Width profile of the interface

- More complex behavior than the standard EW width $ightarrow w(t) \sim t^{1/4}$
- Conclusion $\rightarrow \beta_{eff} > \beta$ for 3 decades and $\beta_{eff} \rightarrow 1/4$ when $t \rightarrow \infty$
- Phenomenology ?

KPZ equation

KPZ equation and generalities

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \eta$$
(24)

KPZ equation

KPZ equation and generalities

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \eta$$
(24)

- Exact solutions in 1d
- Exponents eta=1/3 , z=3/2 , lpha=1/2
- RSOS, Eden model, $BD \in KPZ$ univ. class

KPZ equation

KPZ equation and generalities

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \eta$$
(24)

- Exact solutions in 1d
- Exponents eta=1/3 , z=3/2 , lpha=1/2
- RSOS, Eden model, $BD \in KPZ$ univ. class

KPZ equation

KPZ equation and generalities

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \eta$$
(24)

- Exact solutions in 1d
- Exponents eta=1/3 , z=3/2 , lpha=1/2
- RSOS, Eden model, $BD \in KPZ$ univ. class

Excellent agreement with the theory

- Family Viczek scaling checked
- $\alpha = 0.50(0), \beta = 0.336(11)$ same for the 2 geometries (Takeuchi et Sano 2010)
- Geometry dependent height distribution in perfect agreement with exact solutions. (Sasamoto, Spohn, Prahofer, le Doussal...)

RSOS process and KPZ equation

RSOS process and KPZ equation

Continuum limit of the RSOS process

• Discrete Langevin equation $\frac{\mathrm{d}h_i}{\mathrm{d}t} = \Gamma a \ \omega_i^{(0)} + \eta_i(t) = \Gamma a \ \theta_{i+1,i}\theta_{i-1,i} + \eta_i(t)$

RSOS process and KPZ equation

Continuum limit of the RSOS process

- Discrete Langevin equation $\frac{\mathrm{d}h_i}{\mathrm{d}t} = \Gamma a \ \omega_i^{(0)} + \eta_i(t) = \Gamma a \ \theta_{i+1,i}\theta_{i-1,i} + \eta_i(t)$
- Continuum equation

$$\frac{\partial h}{\partial t} - \nu \frac{\partial^2 h}{\partial^2 x} = \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \eta$$
(25)

- Valid in any dimension
- Next: Boundary RSOS process ?

RSOS process and KPZ equation

RSOS process and KPZ equation

Modification of transition rates.

•
$$h(0,t) > h(x,t)$$

•
$$\omega_1^{(0)} = \theta_{21}(1-\epsilon)$$

•
$$\omega_i^{(0)} = \theta_{i+1,i}\theta_{i-1,i}$$
 pour $i = 2, 3...$

RSOS process and KPZ equation

Modification of transition rates.

•
$$h(0,t) > h(x,t)$$

•
$$\omega_1^{(0)} = \theta_{21}(1-\epsilon)$$

•
$$\omega_i^{(0)} = \theta_{i+1,i} \theta_{i-1,i}$$
 pour $i = 2, 3...$

Continuum limit of the RSOS process with a boundary in i = 0

$$\frac{\mathrm{d}h_i}{\mathrm{d}t} = \mathsf{\Gamma} a \Big(\omega_i^{(0)} + \Delta \tilde{\omega}_i^{(0)} \delta_{i,1} \Big) + \eta_i(t) \quad \forall i \in \mathbb{N}$$
(26)

RSOS process and KPZ equation

Modification of transition rates.

•
$$h(0,t) > h(x,t)$$

•
$$\omega_1^{(0)} = \theta_{21}(1-\epsilon)$$

•
$$\omega_i^{(0)} = \theta_{i+1,i} \theta_{i-1,i}$$
 pour $i = 2, 3...$

Continuum limit of the RSOS process with a boundary in i = 0

• Discrete Langevin equation

$$\frac{\mathrm{d}h_i}{\mathrm{d}t} = \mathsf{Fa}\Big(\omega_i^{(0)} + \Delta\tilde{\omega}_i^{(0)}\delta_{i,1}\Big) + \eta_i(t) \quad \forall i \in \mathbb{N}$$
(26)

Continuum limit

$$\frac{\partial h}{\partial t} = \nu \frac{\partial^2 h}{\partial^2 x} + \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \nu \left(\mu_1 + \mu_2 \frac{\partial h}{\partial x}\Big|_{x=0}\right) \delta(x) + \eta \qquad \forall x \in \mathbb{R} +$$
(27)

• Is this equation right ?

RSOS Process and KPZ equation

Profile scaling ansatz

• Continuous Langevin Eq ($\mu_2 = 1$)

$$\frac{\partial h}{\partial t} = \nu \frac{\partial^2 h}{\partial^2 x} + \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \nu \left(\mu_1 + \frac{\partial h}{\partial x}\Big|_{x=0}\right) \delta(x) + \eta$$
(28)

RSOS Process and KPZ equation

Profile scaling ansatz

• Continuous Langevin Eq ($\mu_2 = 1$)

$$\frac{\partial h}{\partial t} = \nu \frac{\partial^2 h}{\partial^2 x} + \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \nu \left(\mu_1 + \frac{\partial h}{\partial x}\Big|_{x=0}\right) \delta(x) + \eta$$
(28)

• Scaling law $\langle h(x,t)
angle = t^{1/\gamma} \Phi(xt^{-z})$ with z=3/2 and $\gamma=3$

RSOS Process and KPZ equation

Profile scaling ansatz

• Continuous Langevin Eq ($\mu_2 = 1$)

$$\frac{\partial h}{\partial t} = \nu \frac{\partial^2 h}{\partial^2 x} + \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \nu \left(\mu_1 + \frac{\partial h}{\partial x}\Big|_{x=0}\right) \delta(x) + \eta$$
(28)

• Scaling law
$$\langle h(x,t) \rangle = t^{1/\gamma} \Phi(xt^{-z})$$
 with $z = 3/2$ and $\gamma = 3$

• Universal relation

$$\gamma = \frac{z}{z-1}$$

RSOS Process and KPZ equation

Profile scaling ansatz

• Continuous Langevin Eq ($\mu_2 = 1$)

$$\frac{\partial h}{\partial t} = \nu \frac{\partial^2 h}{\partial^2 x} + \lambda \left(\frac{\partial h}{\partial x}\right)^2 + \nu \left(\mu_1 + \frac{\partial h}{\partial x}\Big|_{x=0}\right) \delta(x) + \eta$$
(28)

• Scaling law
$$\langle h(x,t)
angle = t^{1/\gamma} \Phi(xt^{-z})$$
 with $z = 3/2$ and $\gamma = 3$

• Universal relation

$$\gamma = \frac{z}{z-1}$$

Width profile of the interface

- standard width for KPZ $ightarrow w(t) \sim t^{1/3}$
- modification close to the boundary ?
- same phenomenology as the EW case ?

Width profile of the interface

- standard width for KPZ $ightarrow w(t) \sim t^{1/3}$
- modification close to the boundary ?
- same phenomenology as the EW case ?

Figure : Width w(x, t) for RSOS: $\beta_{\text{eff}} \sim 0.35$

Conclusion and perspectives

Conclusions

• Universal behavior for the height and width profile of EW and KPZ equation

Conclusion and perspectives

Conclusions

- Universal behavior for the height and width profile of EW and KPZ equation
- No real surface exponents but a universal crossover regime

Conclusion and perspectives

Conclusions

- Universal behavior for the height and width profile of EW and KPZ equation
- No real surface exponents but a universal crossover regime
- Recover the standard behavior at long time

Conclusion and perspectives

Conclusions

- Universal behavior for the height and width profile of EW and KPZ equation
- No real surface exponents but a universal crossover regime
- Recover the standard behavior at long time

Perspectives

Mullins-Herring equation / MBE equation

Conclusion and perspectives

Conclusions

- Universal behavior for the height and width profile of EW and KPZ equation
- No real surface exponents but a universal crossover regime
- Recover the standard behavior at long time

Perspectives

- Mullins-Herring equation / MBE equation
- Ageing properties C(t, s) et R(t, s), fluctuation dissipation theorem

Conclusion and perspectives

Conclusions

- Universal behavior for the height and width profile of EW and KPZ equation
- No real surface exponents but a universal crossover regime
- Recover the standard behavior at long time

Perspectives

- Mullins-Herring equation / MBE equation
- Ageing properties C(t, s) et R(t, s), fluctuation dissipation theorem
- Generalization in higher dimensions

Conclusion and perspectives

Conclusions

- Universal behavior for the height and width profile of EW and KPZ equation
- No real surface exponents but a universal crossover regime
- Recover the standard behavior at long time

Perspectives

- Mullins-Herring equation / MBE equation
- Ageing properties C(t, s) et R(t, s), fluctuation dissipation theorem
- Generalization in higher dimensions
- Experimental comparisons ?

Conclusion and perspectives

Thank you for your attention !!

