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@ Creation of a random uncorrelated interface
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Random deposition

@ Deposition of particles randomly on the substrate (no diffusion)
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Brownian interface

o 20 — F 4 n(x,t)

o Gaussian white noise (n(x, t)n(x’,t')) = 2T§(x — x")é(t — t’)
e Solution — h(x,t) = Ft + [dtin(x, t1)



Introduction to interface growth process

Family model and EW equation
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Introduction to interface growth process

Family model and EW equation

Deposition relaxation process ( ) and discrete Langevin equation

(z,t) @) h(z,t)

dh; 0 d
| (ol ol 4 ul)) e
!
|,I eecbem ° UJ? = 91+1 191—1 i
RER) T ° w,g = 01+1 191 1,i + ‘9171 10H~1 i
! ° UJ — 9171 101+1 i G 01+1 191 1,i
i S N O O with 9;i11; = e(hiil — h1) and=1-0

Continuum limit and the Edwards-Wilkinson equation

dh;

Oh(x, t 92 h(x, t
b FaM0 4 () 2RO PR 1)
t ot 02x

@ Solution — h(x,t) = [dt1 [dx1 n(x1, t1)K(x — x1,t — t1)
o Heat Kernet: K(x,t) := exp (—x2/4t)/V/4nt
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Interface growth process

Fluctuations and the Family

width of the interface — w(t, x) = <[h(t,x) (h(t,x))] > )
_ G —1/z v ifukl
wi(t) = w(t,x) = t°F (Lt ) W sy Mithz=a/8 ()

—d
Critical exponents - z =2 and a = ZT — EW universality class (4)
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Edwards-Wilkinson equation and boundary effects

Interface growth and Family-Viczek scaling

Boundary interface growth process

@ What happens to the mean profile of the interface ?

o Fluctuation close to boundary vs far from the boundary ?
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Interface growth and Family-Viczek scaling

interface growth process

@ What happens to the mean profile of the interface ?
o Fluctuation close to boundary vs far from the boundary ?

Modification of the process close to a hard wall

o semi-infinite lattice i = 1,2...
e Hard wall: hg > h;

bz, ) h(z,t) o

h(0,t) > h(x,t)

h(z,t) © h(,t)

h(0,1) > h(z,t)
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@ Wall acts like an infinite energy barrier
@ new exponents ? — new universality classes ?

@ new phase transitions ?



Edwards-Wilkinson equation and boundary effects

From the microscopic process to a continuum equation

i) g het)

Slo Slo @ =021(1—¢) = O(1) (5)

g | s o = (1 - e)fa + %ézl =0@1) (6)
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Edwards-Wilkinson equation and boundary effects

From the microscopic process to a continuum equation

Discrete Langevin equation

A h(a,t) _ h(a,t)
Slo Slo @ =021(1—¢) = O(1) (5)
g | s o = (1 - e)fa + %ézl =0@1) (6)

‘ O ~ &8 ~ Oe) (7)

Discrete Langevin equation

° % = Fa[@?—&-wf] +m(t) = Fa[w?—l—wg—&-wg—&-(w —wl)] + m(t)
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From the microscopic process to a continuum equation

Discrete Langevin equation

h(0,2) > h(z,t)

ha,t)

(a)

h(z, t)
®) @

(0,8) > h(z t)

(
021 =0(1) (6)

®)

™

dhy
dt

dho
dt

= Fa[@? +w§] +m(t) = Fa[w? +ws +wg + (&2 —wl)] + m1(t)
9] +ma(e)

= Fa[wg+w§+cbf] + n2(t) = I'a[wg—f—wg—‘rwf—‘r(

d
Wi = eq
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From the microscopic process to a continuum equation

Discrete Langevin equation

A h(a,t) _ h(a,t)
Slo Slo @ =021(1—¢) = O(1) (5)
T | oo o

‘ ‘ O ~ &8 ~ Oe) (7)

Discrete Langevin equation

° % = Fa[@?—&-wf] +m(t) = Fa[w?—l—wg—&-wg—&-(w —wl)] + m(t)

° % = Fa[wg+w§+tbf] + n2(t) = I'a[wg—i—wg—‘rwf—&-(wf _"-’1)] + n2(t)

° dhé.?z = Fa[w +why Fwf ] +mi(t) = raMlgO) +mi(t)



Edwards-Wilkinson equation and boundary effects

From the microscopic process to a continuum equation

Discrete Langevin equation

A h(z,t) _ hz,t)
Slo Slo @ =021(1—¢) = O(1) (5)
T | oo o

‘ ‘ O ~ &8 ~ Oe) (7)

Discrete Langevin equation

o 4 — Fa[@? +w§] +m(t) = Fa[w? + W + wd + (@9 —w?)] + m(t)

dt
° % = I'a[wg + w§ +L7Jf] + n2(t) = I'a[wg +wf§ + wf + (@¢ —wf)] + n2(t)
dh; 0
° —t = ra[“’? +wi + w;tl] +mi(t) = FaMf Ut ni(t)
Discrete Langevin equation
dh;
= ra[M® + 85061 + AG{D6: 5] +mi(e) for i =1,2,3... (8)



Edwards-Wilkinson equation and boundary effects

Continuum formulation

Edwards Wilkinson equation

Oh 8%h
on_, a1
ot 02x

oh
:y<M1+Mza‘X:0>5(X)+n x € Rt 9)
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Continuum formulation

Edwards Wilkinson equation

Oh 8%h
on_, a1
ot 02x

@ Scaling approach

oh -
:u<M1+Mza‘X:0>O(X)+7] x € Rt 9)

@ Solve the linear equation

oh 0?%h

oh
5 V52x :V(u1+,u2—|xzo)6(x)+n p2 =1 (10)
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Continuum formulation

Edwards Wilkinson equation

Oh 8%h
on_, a1
ot 02x

@ Scaling approach

oh -
:u<M1+Mza‘X:0>O(X)+7] x € Rt 9)

@ Solve the linear equation

oh 0?%h

oh
5 V52x :V(u1+,u2—|xzo)6(x)+n p2 =1 (10)

Ox

@ Calculation of the exact mean profile (h(t,x))
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Continuum formulation

Edwards Wilkinson equation

Oh 8%h
on_, a1
ot 02x

@ Scaling approach

oh -
:u<M1+Mza‘X:0>O(X)+7] x € Rt 9)

@ Solve the linear equation

Oh 82h
on_, o7
ot 02x

oh
= v+ 2], )80 +n| p2=1 (10)

@ Calculation of the exact mean profile (h(t,x))

] . 2\1/2
o Calculation of fluctuations w(t, x) = <[h(t,x) — (h(t,x))] >
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Continuum formulation

Edwards Wilkinson equation

Oh 8%h
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@ Scaling approach
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@ Solve the linear equation
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@ Calculation of the exact mean profile (h(t,x))
o Calculation of fluctuations w(t, x) = <[h(t,x) — (h(t,x))] >

. . 2\1/2
o Calculation of correlations <[h(t,x) — (h(t',x"))] >



Edwards-Wilkinson equation and boundary effects

Continuum formulation

Edwards Wilkinson equation

Oh 8%h
on_, a1
ot 02x

@ Scaling approach

oh -
:u<M1+Mza‘X:0>O(X)+7] x € Rt 9)

@ Solve the linear equation

Oh 82h
on_, o7
ot 02x

oh
= v+ 2], )80 +n| p2=1 (10)

@ Calculation of the exact mean profile (h(t,x))

] . 2\1/2
o Calculation of fluctuations w(t, x) = <[h(t,x) — (h(t,x))] >

1/2

Calculation of correlations <[h(t,x) — (h(t’,x’)>]2>

@ Compare to MC simulations
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Scaling law of the mean profile of the interface

Hypothesis: scaling ansatz

(h(x,t)) = t1/7¢'()\) with A = xt—1/z (11)
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Hypothesis: scaling ansatz
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Scaling law of the mean profile of the interface

Hypothesis: scaling ansatz

(h(x, 1)) = tY7d(N) with A = xt—1/Z (11)
11 2
;+;:1and;=1~> (12)
" )‘2 / 1
®"(N) + ?tb () — E<|>(/\) =0 (13)

T Ansatz results

06 — (MY

s =200 Il 4] <h(X, t)) = t1/2¢(Xt71/2)
o ®O(N\) = dg(e ™ — Vrherfc V)

@ In agreement with simulations

o t=1000 ||

1”2

<h(tx)>
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Scaling law of the mean profile of the interface

Hypothesis: scaling ansatz
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o ®O(N\) = dg(e ™ — Vrherfc V)

@ In agreement with simulations

o t=1000 ||

1”2

<h(tx)>




Edwards-Wilkinson equation and boundary effects

Laplace transform solution

Boundary EW equation is linear

Oh 8%h 0

h
v = y(ul + gh:o)‘S(X) 49 (14)

Linear — Laplace transform Lyx.h(x, t) = h%(t) = [p dx e”P*h(x,t), p>0




Edwards-Wilkinson equation and boundary effects

Laplace transform solution

Boundary EW equation is linear

oh  9%h h
5~ Vo = V(i + 5 1o) 000 + 1 (14)

Linear — Laplace transform Lyx.h(x, t) = h%(t) = [p dx e”P*h(x,t), p>0

Solution

1 > dv

=277 ), ke

|:X,U1 + 2vhg (t - g)] + ¢(t,x) (15)

where

ho := h(0,t) = 21\/§+ ¢(t,0) and (h(x,t)) = t1/2 26 (e_>‘ — V7 erfc \/X)

™

C(x,t) = /ot /ooo ol TR — 12— gl ) =5 () =10 (16)

min(t,t’) oo
(€t X)C(E, X)) = 2T/0 dT/O du K(x— u, t — KX — u, ¢ —7) (17)



Edwards-Wilkinson equation and boundary effects

Exact solution: Fluctuations of the interface w(x, t)

w2(x, t) = w2(t,x) + wi(t, x) + wi(t

=L [t (e 59)) oo
w2(t,x) = 7 /OO i2av <( (t— %,0) g(t,x)> (19)

w2(t,x) = (¢ (£, x)) = E/Otd{/omdv — [f%} (20)



Edwards-Wilkinson equation and boundary effects

Exact solution: Fluctuations of the interface w(x, t)

= w(t,x) + wi(t, x) + w2(t,x) = TVtdu(N)

(t,x) = //)\ (W:;‘l//(isz, <( (t = %,O) ¢ (t = %,0)> (18)
w2(t,x) = 7 /OO i2av << (t— %,0) g(t,x)> (19)

w2(t,x) = (¢ (£, x)) = E/Otdf/omdv _— [f%} (20)

Asymptotic expansion A — 0

wi(t,x) = Tve (W + +log(2) — 2+ log()) g + O(,\3/2)> (21)
W22(t,x) =~ T\/EZ\/?- 2\/X+ )\5 + O()\Z) (22)

w2(t,x) ~ TVt (W — +log(2) — 2 + log())) g + O(A3/2)> (23)

2
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Figure : Width w(x, t) simulated by
the deposition-relaxation algorithm
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Figure : Width w(x, t) simulated by Figure : Effective correction B.g ~ 0.32 to

the deposition-relaxation algorithm the exponent 8 = 1/4.
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Figure : Width w(x, t) simulated by Figure : Effective correction B.g ~ 0.32 to
the deposition-relaxation algorithm the exponent 8 = 1/4.

Width profile of the interface

@ More complex behavior than the standard EW width — w(t) ~ t1/4
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Width profile of the interface

@ More complex behavior than the standard EW width — w(t) ~ t1/4

@ Conclusion — Beg > S for 3 decades and B — 1/4 when t — oo
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Figure : Width w(x, t) simulated by Figure : Effective correction B.g ~ 0.32 to
the deposition-relaxation algorithm the exponent 8 = 1/4.

Width profile of the interface

@ More complex behavior than the standard EW width — w(t) ~ t1/4

@ Conclusion — Beg > S for 3 decades and B — 1/4 when t — oo
@ Phenomenology ?
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KPZ equation

KPZ equation and generalities
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KPZ equation

KPZ equation and generalities
oh 9%h Oh\2
T

ot o2x (6X> T+

(24)

@ Exact solutions in 1d
@ Exponents §=1/3,z=3/2, a=1/2
@ RSOS, Eden model, BD € KPZ univ. class
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KPZ equation

KPZ equation and generalities

oh (92h_>\(6h)2+7]

- = —_ 24
ot Vazx Ox (24)

@ Exact solutions in 1d
@ Exponents §=1/3,z=3/2, a=1/2
@ RSOS, Eden model, BD € KPZ univ. class

Takeuchi Sano experiments
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KPZ equation

KPZ equation and generalities

Oh 8%h Oh\ 2
AL AL (i 24
ot Vazx (BX) tn (24)

@ Exact solutions in 1d
@ Exponents §=1/3,z=3/2, a=1/2
@ RSOS, Eden model, BD € KPZ univ. class

Takeuchi Sano experiments Excellent agreement with the theory

@ Family Viczek scaling checked

e a = 0.50(0), B = 0.336(11) same
for the 2 geometries (Takeuchi et
Sano 2010)

= o Geometry dependent height
distribution in perfect agreement
with exact solutions. (Sasamoto,
; Spohn, Prahofer, le Doussal...)

o0 200 300
(um)




RSOS process and KPZ equation

h(z,t)

t=5

t=1

t=3




RSOS process and KPZ equation

Kardar-Parisi-Zhang equation and boun

h(z,t)

3|t=4 t=5|t=4|t=5

t=1|t=4|t=2|t=3|t=1

t=3

Continuum limit of the RSOS process

=Ta w,go) +ni(t) =Ta 0i41,i0i—1,i +ni(t)

@ Discrete Langevin equation

h;

dt
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RSOS process and KPZ equation

h(z,t)

Continuum limit of the RSOS process

o Discrete Langevin equation (11’1" =Ta wgo) +ni(t) =Ta 0i11,i0i_1,; + ni(t)

o Continuum equation

oh 0%h _)\(8h)2+n (25)

ot "oex "\

e Valid in any dimension

@ Next: Boundary RSOS process ?
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RSOS process and KPZ equation

h(0,) > h(a,t)
i
I
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RSOS process and KPZ equation

Modification of transition rates.

B |- - - ° h(O7 t) > h(X7 t)
g t=4|t=4|t=3 t=5 t=5 o wgo) :921(1—6)
= |t=1ft=2|t=2|t=1]t=4a|t=2|t=3|t=1]t=3

o wEO) = 9,'4,1,,'9,'_1,,' pour i = 2,3..
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RSOS process and KPZ equation

Modification of transition rates.
= [=s e h(0,t) > h(x,t)
7 t=4ft=4|t=3 =) i=0 0
= owg)=921(175)
= |t=1|t=2ft=2ft=1|t=4|t=2|t=3|t=1|t=3 (0) )
t=0 | o w; "= 6!‘+1,i9i71,f pour i = 2,3..

Continuum limit of the RSOS process with a boundary in i =0

@ Discrete Langevin equation

dh;
dt

Fa(w{” +A8{%6:1) +mi(r) VieN (26)

i
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RSOS process and KPZ equation

Modification of transition rates.
t=5 ] h(O, t) > h(X7 t)
° wgo) =621(1—¢)

| e ‘”50) = 0i41,i0i—1,; pour i =2,3..

h(0,) > h(a,t)
i
I
0
0
i

Continuum limit of the RSOS process with a boundary in i =0

@ Discrete Langevin equation

dh;
dt

i

Fa(w{” +A8{%6:1) +mi(r) VieN (26)

o Continuum limit

oh 92h Oh\2 oh
i V@ A(—) + ll(ul + po—

0 R 27
Ox Ox x:O) () +n v e R (27)

@ Is this equation right ?
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RSOS Process and KPZ equation

Profile scaling ansatz

o Continuous Langevin Eq (u2 = 1)

%:V%+)\(%)2+U(Ul+%‘X:O)é(X)+n (28)
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RSOS Process and KPZ equation

Profile scaling ansatz

o Continuous Langevin Eq (u2 = 1)

%:V%+)\(%)2+U(Ul+%‘X:O)é(X)+n (28)

o Scaling law (h(x, t)) = t'/7d(xt—?) with z=3/2 and y =3
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RSOS Process and KPZ equation

Profile scaling ansatz

o Continuous Langevin Eq (u2 = 1)

%:V%+)\(%)2+U(Ul+%‘X:O)é(X)+n (28)

o Scaling law (h(x, t)) = t'/7d(xt—?) with z=3/2 and y =3

@ Universal relation N =
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RSOS Process and KPZ equation

Profile scaling ansatz

o Continuous Langevin Eq (u2 = 1)

%:V%+)\(%)2+U(Ul+%‘X:O)é(X)+n (28)

o Scaling law (h(x, t)) = t'/7d(xt—?) with z=3/2 and y =3

@ Universal relation ¥

<hiza)>
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Width profile of the interface

o standard width for KPZ — w(t) ~ t1/3
@ modification close to the boundary ?

@ same phenomenology as the EW case ?
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Width profile of the interface

o standard width for KPZ — w(t) ~ t1/3
@ modification close to the boundary ?

@ same phenomenology as the EW case ?
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Figure : Width w(x; t) for EW: Figure : Width w(x, t) for RSOS:
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@ Universal behavior for the height and width profile of EW and KPZ equation
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Conclusions

@ Universal behavior for the height and width profile of EW and KPZ equation

@ No real surface exponents but a universal crossover regime

@ Recover the standard behavior at long time
v

@ Mullins-Herring equation / MBE equation

o Ageing properties C(t,s) et R(t,s), fluctuation dissipation theorem

@ Generalization in higher dimensions

@ Experimental comparisons ?




Conclusion and perspectives

Thank you for your attention !
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