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STOCHASTIC MASS TRANSPORT

In stochastic mass transport models the focus lies typically on
the qualitative abstract understanding of transport processes.
That is, some basic kind of particles moves according to a
prescribed dynamics ruleset. Examples are particle are the
zero-range process (ZRP) or a process extended by short
range interactions where particles hop away depending on
the local particle occupation plus that of direct neighbors in
the latter case. Both feature particle condensation.
In this work we study a the steady state of a transport model
that is based on a process generalized from the zero-range
process (ZRP) [1, 2], but with a pair-factorized steady state.
It most notably features extended condensates with a quali-
tatively tunable envelope shape.

SCALING THEORY

Classical scaling [3] yields that droplet formation leads to a
state where the number density of droplets has a universal
form

n(s, t) = sθf (
s

S(t)
) (θ2D = 5/3, θ1D = 4/3)

with a geometric exponent θ, the average volume of the
largest droplet S(t).

BLASCHKE ET AL.
For a 2-dimensional substrate Blaschke et al. [4] measured
the droplet size distributions after different times in experi-
ment and numerical simulation (adding fixed size particles
and subsequently merging overlapping droplets).

Experiment Directly observe a cooled substrate under
constant influx from water condensation using a high resolu-
tion CCD camera.

Simulation Simulate constant influx by adding droplets
of size s0 at random positions and subsequently merging
overlapping droplets. Diffusion, drift, falling and physical
merging of droplets are neglected.
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TRANSPORT PROCESS

The model consists of a number of indistinguishable parti-
cles distributed on a peridoc ring lattice. In the discrete time
stochastic process a particle may leave a randomly selected
site at every time step with a hopping rate u(mi|mi−1,mi+1)
and move to either direct neighbour. This dynamics is the
same as in the ZRP with an added nearest-neighbour inter-
action.
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This also leads to a steady state that is similar to that of the
ZRP, but factorizes over pairs of sites instead of single sites:

P (~m) = P (m1, . . . ,mN ) =
1

Z

N∏
i=1

g(mi,mi+1)

The hopping rate given by the weight functions:

u(mi|mi−1,mi+1) =
g(mi − 1,mi−1)
g(mi,mi−1)

g(mi − 1,mi+1)

g(mi,mi+1)

The weights are assumed to separate into zero-range and
local-range interactions:

g(m,n) =
√
p(m)p(n)K(|m− n|)

When the weight functions fall of fast enough, a critical den-
sity ρc exists, so that any particles added to the system, that
increase the density above ρc add to the mass of an emerg-
ing condensate.
Well-behaving weight functions, where the zero-range inter-
action approaches a constant for large m and the short-range
interaction falls off faster than any power law lead to an ana-
lytically known condensate shape and scaling.

To produce interesting behaviour these conditions are delib-
erately broken by introducing weights with tunable fall-off [5]:

K(x) ∼ e−a|x|
β
, p(m) ∼ e−bm

γ

TUNABLE CONDENSATE SHAPE AND WIDTH

The shape of the condensate as well as the scaling relation
of its volume to its width (contact surface) can be tuned [6]:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

β

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

γ

1

100

200

300

400

500

p
er

ce
iv

ed
co

n
d

en
sa

te
w

id
th

0.1

1

10

>100

cr
it

ic
al

d
en

si
ty
ρ
c

In order to simulate 3D droplets on a 1D substrate, θ1D = 4/3,
the correct width scaling

W ∝M ′α, α =
β − γ
2β − γ for β ≥ 1 , α =

β − γ
1 + β − γ for β < 1

is realized for α = 1/3, that is γ = β/2 for β ≥ 1 and γ = β−1/2
for β < 1. We select a parametrization with a low crtical
density for condensation and reasonable simulation perfor-
mance: β = 1.2, γ = 0.6.

DROPLET SIZE DISTRIBUTION

For a system with L = 2000 sites, symmetric hopping, a
constant influx of 10−3 particles per sweep we estimate the
droplet size distribution:
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CONCLUSIONS

•Our stochastic transport model reproduces the qualitative
features of the droplet size distribution of Blaschke et al.,
i.e. tail, dips and bump, as well as a good collapse of the
distributions at least for large times
• Interestingly our results compare better to the experimental

distributions than to numerical results of that group
• Effects of diffusion, drift and merging of droplets are im-

plicitly included in the transport model
• The computational cost is however quite large compared

to the numerical simulations [4] (even in one dimension)
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