
Why? Algorithm Scaling Limits Summary

Scaling properties of a parallel implementation of
the multicanonical algorithm

Johannes Zierenberg, Martin Marenz, Wolfhard Janke

Institute for Theoretical Physics
University of Leipzig

30.11.2012



Why? Algorithm Scaling Limits Summary

Outline

Why?

Algorithm

Scaling

Limits

Summary



Why? Algorithm Scaling Limits Summary

Why?

1

10

100

1 10 100

S
p
ee
d
u
p

Number Processes

best case

usual case

• Can a multicanonical simulation be parallelized in order to
reduce my waiting time?

• If it can, where is the limit of cost-benefit?



Why? Algorithm Scaling Limits Summary

Why?

1

10

100

1 10 100

S
p
ee
d
u
p

Number Processes

best case

usual case

• Can a multicanonical simulation be parallelized in order to
reduce my waiting time?

• If it can, where is the limit of cost-benefit?



Why? Algorithm Scaling Limits Summary

Multicanonical Method1

The canonical partition sum can be rewritten

Zcan =
∑
{xi}

e−βEi

→ Zmuca =
∑
{xi}

W (Ei )

W (n+1)(E ) =
W (n)(E )

H(n)(E )
, or

W (n+1)(E ) = F
[
W (n)(E ),W (n)(E + ∆E )

]

E

H(E)

1
B. A. Berg and T. Neuhaus, Phys. Lett. B 267 249 (1991), Phys. Rev. Lett. 68 9 (1992)



Why? Algorithm Scaling Limits Summary

Multicanonical Method1

The canonical partition sum can be rewritten

Zcan =
∑
{xi}

e−βEi → Zmuca =
∑
{xi}

W (Ei )

W (n+1)(E ) =
W (n)(E )

H(n)(E )
, or

W (n+1)(E ) = F
[
W (n)(E ),W (n)(E + ∆E )

]

E

H(E)

1
B. A. Berg and T. Neuhaus, Phys. Lett. B 267 249 (1991), Phys. Rev. Lett. 68 9 (1992)



Why? Algorithm Scaling Limits Summary

Multicanonical Method1

The canonical partition sum can be rewritten

Zcan =
∑
{xi}

e−βEi → Zmuca =
∑
{xi}

W (Ei )

W (n+1)(E ) =
W (n)(E )

H(n)(E )
, or

W (n+1)(E ) = F
[
W (n)(E ),W (n)(E + ∆E )

]
E

H(E)

1
B. A. Berg and T. Neuhaus, Phys. Lett. B 267 249 (1991), Phys. Rev. Lett. 68 9 (1992)



Why? Algorithm Scaling Limits Summary

Parallel MUCA

∑
i

H
(n)
i (E )

= H(n)(E )→W (n+1)(E ) = W
(n+1)
i (E )



Why? Algorithm Scaling Limits Summary

Parallel MUCA

∑
i

H
(n)
i (E ) = H(n)(E )

→W (n+1)(E ) = W
(n+1)
i (E )



Why? Algorithm Scaling Limits Summary

Parallel MUCA

∑
i

H
(n)
i (E ) = H(n)(E )→W (n+1)(E )

= W
(n+1)
i (E )



Why? Algorithm Scaling Limits Summary

Parallel MUCA

∑
i

H
(n)
i (E ) = H(n)(E )→W (n+1)(E ) = W

(n+1)
i (E )



Why? Algorithm Scaling Limits Summary

How to judge the speedup?

When changing the number of processes, the parallel
implementation yields different simulations.

p : number of processes

M : number of sweeps per iteration (for each process)

Mopt: optimal number of sweeps per iteration
(min. total number of sweeps for convergence)

p = 1

M

Total Sweeps
until convergence



Why? Algorithm Scaling Limits Summary

How to judge the speedup?

When changing the number of processes, the parallel
implementation yields different simulations.

p : number of processes

M : number of sweeps per iteration (for each process)

Mopt: optimal number of sweeps per iteration
(min. total number of sweeps for convergence)

p = 1

M

Total Sweeps
until convergence

M1
opt



Why? Algorithm Scaling Limits Summary

How to judge the speedup?

When changing the number of processes, the parallel
implementation yields different simulations.

p : number of processes

M : number of sweeps per iteration (for each process)

Mopt: optimal number of sweeps per iteration
(min. total number of sweeps for convergence)

p = 4

M

Total Sweeps
until convergence

M4
opt



Why? Algorithm Scaling Limits Summary

Ising - Speedup

speedup in time speedup in sweeps per core

Sp = t̄1
t̄p

S∗p =
[N̄iterMopt(L,1)]1

[N̄iterMopt(L,p)]p

1

10

100

1 10 100

S
p

p

008 × 008
016 × 016
024 × 024
032 × 032
048 × 048
064 × 064
096 × 096
128 × 128

1

10

100

1 10 100

S
∗ p

p

008 × 008
016 × 016
024 × 024
032 × 032
048 × 048
064 × 064
096 × 096
128 × 128

We can see a linear speedup in both definitions.
This means, that with double amount of processes the simulation
takes half the time for the same total statistics.



Why? Algorithm Scaling Limits Summary

Ising - Precision

The parallel production runs (same total statistics) were analyzed
and the average deviations from the exact results were compared.

0.4

0.8

1.2

1.6

2

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

C
V

T

08× 08
16× 16
32× 32
64× 64

0.001

0.01

0.1

1 10 100
〈d
C

V
〉

p

08× 08
16× 16
32× 32
64× 64

The mean deviation from the exact results remains of the same
order for different degrees of parallelization.



Why? Algorithm Scaling Limits Summary

8-state Potts - Speedup

A drop in performance may be observed for systems accompanied
by barriers like the Potts model in the energy and the Ising model
in the magnetization.

1

10

100

1 10 100

S
p

p

08× 08
16× 16
24× 24
32× 32
48× 48
64× 64

1

10

100

1 10 100
S
∗ p

p

08× 08
16× 16
24× 24
32× 32
48× 48
64× 64

Sp = t̄1
t̄p

S∗p =
[N̄iterMopt(L,1)]1

[N̄iterMopt(L,p)]p



Why? Algorithm Scaling Limits Summary

Natural Limit

The effect can be understood comparing the integrated
autocorrelation time τ to the number of sweeps per iteration.

τ

τ

τ
p=1

p=4

p=8



Why? Algorithm Scaling Limits Summary

Summary and Outlook

• The simple parallel implementation speeds up the simulation
in the weight iteration and the production run.

• A limit is given by possibly emerging barriers and following
large integrated autocorrelation times.

• Outlook
• Combination with advanced variations of MUCA
• Application to polymer and other continuum models



Why? Algorithm Scaling Limits Summary

Acknowledgments

Thank you for your attention

Funding:
European Union and the Free State of Saxony

Supported by:
BuildMoNa, DFH-UFA


	Why?
	Algorithm
	Scaling
	Limits
	Summary

