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• Can a multicanonical simulation be parallelized in order to
reduce my waiting time?

• If it can, where is the limit of cost-benefit?
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Multicanonical Method1

The canonical partition sum can be rewritten

Zcan =
∑
{xi}

e−βEi

→ Zmuca =
∑
{xi}

W (Ei )

W (n+1)(E ) =
W (n)(E )

H(n)(E )
, or

W (n+1)(E ) = F
[
W (n)(E ),W (n)(E + ∆E )

]

E

H(E)

1
B. A. Berg and T. Neuhaus, Phys. Lett. B 267 249 (1991), Phys. Rev. Lett. 68 9 (1992)
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Parallel MUCA

∑
i

H
(n)
i (E )

= H(n)(E )→W (n+1)(E ) = W
(n+1)
i (E )
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How to judge the speedup?

When changing the number of processes, the parallel
implementation yields different simulations.

p : number of processes

M : number of sweeps per iteration (for each process)

Mopt: optimal number of sweeps per iteration
(min. total number of sweeps for convergence)

p = 1

M

Total Sweeps
until convergence
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How to judge the speedup?

When changing the number of processes, the parallel
implementation yields different simulations.

p : number of processes

M : number of sweeps per iteration (for each process)

Mopt: optimal number of sweeps per iteration
(min. total number of sweeps for convergence)

p = 4

M

Total Sweeps
until convergence

M4
opt
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Ising - Speedup

speedup in time speedup in sweeps per core

Sp = t̄1
t̄p

S∗p =
[N̄iterMopt(L,1)]1

[N̄iterMopt(L,p)]p
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We can see a linear speedup in both definitions.
This means, that with double amount of processes the simulation
takes half the time for the same total statistics.
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Ising - Precision

The parallel production runs (same total statistics) were analyzed
and the average deviations from the exact results were compared.
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The mean deviation from the exact results remains of the same
order for different degrees of parallelization.
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8-state Potts - Speedup

A drop in performance may be observed for systems accompanied
by barriers like the Potts model in the energy and the Ising model
in the magnetization.
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Natural Limit

The effect can be understood comparing the integrated
autocorrelation time τ to the number of sweeps per iteration.
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Summary and Outlook

• The simple parallel implementation speeds up the simulation
in the weight iteration and the production run.

• A limit is given by possibly emerging barriers and following
large integrated autocorrelation times.

• Outlook
• Combination with advanced variations of MUCA
• Application to polymer and other continuum models
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