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The experimental scale (I)

A proper phase transition takes place only in the idealized limit of
infinitely many degrees of freedom.

Even if this limit is never realized in the laboratory, everyday experience
suggests that macroscopic samples of material are infinite for all
practical purposes.

Spin glasses are an exception, because of their sluggish dynamics.

Even for experimental waiting times (tw) of several hours, the spatial size
of the glassy domains is of ξ(tw) ∼ O(102) lattice spacings.

In a sense, the non-equilibrium infinite system behaves as if composed
of many equilibrium systems of size ξ(tw)D.

This statement can be made quantitative through a
time-length dictionary.
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The experimental scale (II)

Time-length dictionary (Janus Collaboration)
Equilibrium: finite size at infinite tw
Non-equilibrium: infinite system at finite tw

Quantitative: at T = 0.64Tc, choose tw such that L = 3.7ξ(tw)

The experimental scale

Experimental time scale: 1 hour ∼ 4× 1015 MC steps.

ξ(tw) ∼ t1/z(T )
w : relevant equilibrium size L = 110
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Pseudocritical temperatures (I)

As we have seen, for spin glasses the experimentally relevant
scale is that of a large but finite system.
Phase transitions in finite systems are actually crossover
phenomena, describable through finite-size scaling.

However, disordered systems (and specially spin glasses) are
notorious for their strong sample-to-sample fluctuations.
These fluctuations typically decrease with system size, but if we
want to understand their possible experimental relevance we need
to know how their distribution evolves with system size.
In particular, the finite-system pseudocritical temperature is a
relevant (but elusive) quantity.
We want to characterise the statistical properties of this quantity
for three-dimensional (Edwards-Anderson) and mean-field
(Sherrington-Kirkpatrick) spin glasses.
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Pseudocritical temperatures (II)

For finite-size weakly bond-disordered models, this problem is well
understood.

Given a disorder sample J, its pseudocritical temperature T J
c is defined

as the location of the maximum of a relevant susceptibility.

In spin glasses, however, the relevant diverging susceptibility, χSG does
not have a maximum.

χSG ∼ N for all T < Tc (actually, a strictly decreasing function of T ),
so we need a more sophisticated approach.

We will consider dimensionless single-sample observables OJ , which
scale as

OJ(T ,L) ' G
(
(T − T J

c (L))L1/ν)
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Observables for the Edwards-Anderson model (I)

The EA model

H = −
∑
〈x,y〉

SxJxy Sy , Sx = ±1, Jxy = ±1.

Simulations from the Janus Collaboration (up to L = 32 down to T = 0.64Tc).

Propagator

We consider the overlap field qx and its Fourier transform, φ(k).

φ(k) =
∑

x

S(a)
x S(b)

x eik ·x =
∑

x

qxeik ·x

The two-point propagator is GJ(k) = 〈φ(k)φ(−k)〉.

The smallest momentum with periodic boundaries is k = 2π/L:
k (1)

1 = (2π/L,0,0), k (2)
1 = (0,2π/L,0), k (3)

1 = (0,0,2π/L).

We define GJ(k1) = 1
3

∑
i GJ(k (i)

1 ).
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Observables for the Edwards-Anderson model (II)

Dimensionless ratios

We are going to use several dimensionless ratios to search for T J
c :

ξJ/L =
1

2L sin(π/L)

[
GJ(0)

GJ(k1)
− 1
]1/2

,

BJ =
〈q4〉J
〈q2〉2J

,

BJ
G =

∑
i〈[φ(k (i)

1 )φ(−k (i)
1 )]2〉J

[GJ(k1)]2
,

RJ
12 =

GJ(k1)

GJ(k2)

.
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Definition of T J
c for the spin glass (I)

Let us take the sample-averaged version O of any of the OJ .
Up to scaling corrections, it does not depend on L at Tc:

O(Tc,L) = yc +O(L−α), α > 0.

Now, for each L, search for T L
c,y such that O(T L

c,y ,L) = y .
If we are not very far from Tc (i.e., y is not far from yc):

T L
c,y ' Tc + AyL−1/ν(1 + ByL−ω).

Pseudocritical temperature: for each J, T J
O,y such that

OJ(T L,J
O,y ,L) = y .

Of course, different choices of O and y give different T J
O,y , but we

expect the scaling to be the same.
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Definition of T J
c for the spin glass (II)

Example: Binder ratio

 1.4

 1.8

 2.2

 2.6

 3

 0.8  1  1.2  1.4

B

T

The sample-averaged Binder ratio. We take y = 1.51 ≈ B(Tc)

Easy case (red): take the only T J,L
B,y such that BJ(T J,L

B,y ) = 1.51.

Several solutions (green): take the largest.

No solution (blue): only upper bound (less than 1% of samples).
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Finite size scaling of T J
c

As we have seen, the distribution of T J
O,y is very wide.

For a few samples the pseudocritical temperature is outside of our
simulated range.

We cannot consider the arithmetic mean of the T J
O,y .

Instead, we analyse the median T̃ J
O,y of the distribution, unaffected

by the few samples without a solution.
Finally, we can also consider the pseudocritical temperature of the
susceptibility, given by

χJ
SG(T J

χ,y ) = χSG(Tc)y ,

with y ' 1.
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Finite-size scaling of T J
c (II)

Ansatz: T̃ J
O,y has the same scaling as the sample-averaged

version
T̃ J

O,y (L) ' Tc + AL−1/ν .

In principle, for each OJ and y , a fit gives Tc and ν.
However, we have few degrees of freedom.
We consider all the OJ and several y at the same time in a joint fit.
For the same L the different T̃ J

O,y are correlated, so we consider
the full covariance matrix:

χ2 =
n∑

α,β=1

L∑
a,b=1

[
T̃ J
α(La)−Tc−AαL−1/ν

a
]
σ−1
(ia)(jb)

[
T̃ J
β (Lb)−Tc−AβL−1/ν

b

]
,

(here α, β label both the OJ and the y ).
The fit parameters are {Tc, ν,Ay1 ,Ay2 , . . .}.

D. Yllanes (La Sapienza U. di Roma) Pseudocritical temperatures in spin glasses CompPhys12, Leipzig 12 / 18



Finite-size scaling of T J
c (II)

Ansatz: T̃ J
O,y has the same scaling as the sample-averaged

version
T̃ J

O,y (L) ' Tc + AL−1/ν .

In principle, for each OJ and y , a fit gives Tc and ν.

However, we have few degrees of freedom.
We consider all the OJ and several y at the same time in a joint fit.
For the same L the different T̃ J

O,y are correlated, so we consider
the full covariance matrix:

χ2 =
n∑

α,β=1

L∑
a,b=1

[
T̃ J
α(La)−Tc−AαL−1/ν

a
]
σ−1
(ia)(jb)

[
T̃ J
β (Lb)−Tc−AβL−1/ν

b

]
,

(here α, β label both the OJ and the y ).
The fit parameters are {Tc, ν,Ay1 ,Ay2 , . . .}.

D. Yllanes (La Sapienza U. di Roma) Pseudocritical temperatures in spin glasses CompPhys12, Leipzig 12 / 18



Finite-size scaling of T J
c (II)

Ansatz: T̃ J
O,y has the same scaling as the sample-averaged

version
T̃ J

O,y (L) ' Tc + AL−1/ν .

In principle, for each OJ and y , a fit gives Tc and ν.
However, we have few degrees of freedom.

We consider all the OJ and several y at the same time in a joint fit.
For the same L the different T̃ J

O,y are correlated, so we consider
the full covariance matrix:

χ2 =
n∑

α,β=1

L∑
a,b=1

[
T̃ J
α(La)−Tc−AαL−1/ν

a
]
σ−1
(ia)(jb)

[
T̃ J
β (Lb)−Tc−AβL−1/ν

b

]
,

(here α, β label both the OJ and the y ).
The fit parameters are {Tc, ν,Ay1 ,Ay2 , . . .}.
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The pseudocritical temperature for EA
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Result of the fit (L > 8),
χ2/d.o.f. = 32.6/37,

Tc = 1.104(6), ν = 2.26(13).

Best values in the literature
(Hasenbusch et al.):

Tc = 1.109(10), ν = 2.45(15).

Hasenbusch et al. consider corrections to scaling (ω = 1).

We do not have enough data for small L
to fit for ω and ν simultaneously.

We fix ω, ν to the value of Hasenbusch et al. and fit for Tc, L ≥ 8:

Tc = 1.105(8), χ2/d.o.f. = 40.9/38
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The width of the distribution

These results make us confident that our definition of T J
α makes sense.

We want to study the fluctuations.

Define T+
α and T−α : P(T J

α > T+
α ) = 0.16, P(T J

α < T−α ) = 0.16.

∆T J
α = (T+

α − T−α )/2.
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We consider

∆T J
α ' AαL−1/ν(1 + BαL−ω).

Again, we take ν and ω from
Hasenbusch et al.

χ2/d.o.f. = 19.1/21.

D. Yllanes (La Sapienza U. di Roma) Pseudocritical temperatures in spin glasses CompPhys12, Leipzig 14 / 18



The width of the distribution

These results make us confident that our definition of T J
α makes sense.

We want to study the fluctuations.

Define T+
α and T−α : P(T J

α > T+
α ) = 0.16, P(T J

α < T−α ) = 0.16.

∆T J
α = (T+

α − T−α )/2.

 0

 0.2

 0.4

 0.6

 0.8

 0  0.1  0.2  0.3  0.4  0.5

 ∆
T

J α

L
–1/ν

ξ/L

B

χ
SG

We consider

∆T J
α ' AαL−1/ν(1 + BαL−ω).

Again, we take ν and ω from
Hasenbusch et al.

χ2/d.o.f. = 19.1/21.

D. Yllanes (La Sapienza U. di Roma) Pseudocritical temperatures in spin glasses CompPhys12, Leipzig 14 / 18



The Sherrington-Kirkpatrick model

The SK model

H = − 1√
N

∑
x,y

SxJxy Sy , Sx = ±1, Jxy = ±1.

Simulations from Aspelmeier et al. (N ≤ 4096, T ≥ 0.4Tc)

Finite-size scaling

We can follow the same procedure to define T J
α.

Now, the distributions are narrower and there are fewer pathological
cases.

The FSS ansatz is now

T̃ J
α(L) ' Tc + AαN−1/(νDup) = Tc + AαN−1/3.

This scaling can be justified studying the stability of the TAP states.
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Results for SK (I)
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Leading order

This time, we know exactly Tc = 1 and 1/(νDup) = −1/3.

We fit only for the amplitude for N ≥ 256, (χ2/d.o.f. = 4.44/4).

We can include a scaling correction with N−2/3. Now all sizes N ≥ 64 fit,
with χ2/d.o.f. = 2.07/5.

D. Yllanes (La Sapienza U. di Roma) Pseudocritical temperatures in spin glasses CompPhys12, Leipzig 16 / 18



Results for SK (I)

 0.96

 0.97

 0.98

 0.99

 1

 0  0.1  0.2  0.3

 T̃
J χ

N
–1/3

Leading order

This time, we know exactly Tc = 1 and 1/(νDup) = −1/3.

We fit only for the amplitude for N ≥ 256, (χ2/d.o.f. = 4.44/4).

We can include a scaling correction with N−2/3. Now all sizes N ≥ 64 fit,
with χ2/d.o.f. = 2.07/5.

D. Yllanes (La Sapienza U. di Roma) Pseudocritical temperatures in spin glasses CompPhys12, Leipzig 16 / 18



Results for SK (I)

 0.96

 0.97

 0.98

 0.99

 1

 0  0.1  0.2  0.3

 T̃
J χ

N
–1/3

Leading order
Corrections

This time, we know exactly Tc = 1 and 1/(νDup) = −1/3.

We fit only for the amplitude for N ≥ 256, (χ2/d.o.f. = 4.44/4).

We can include a scaling correction with N−2/3. Now all sizes N ≥ 64 fit,
with χ2/d.o.f. = 2.07/5.

D. Yllanes (La Sapienza U. di Roma) Pseudocritical temperatures in spin glasses CompPhys12, Leipzig 16 / 18



Results for SK (II)
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Same analysis for the width:∆T J
α = AαN−1/3 + BαN−2/3.

Without corrections: N ≥ 256, χ2/d.o.f. = 5.36/4.

With corrections: N ≥ 64, χ2/d.o.f. = 2.57/5.
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Conclusions

Comclusions
We have presented a simple method to study the probability
distribution of the pseudocritical temperatures in spin glasses.
We have applied it to the Edwards-Anderson and the
Sherrington-Kirkpatrick models.
The T J

α are shown to follow a straightforward finite-size scaling.
For EA, our computed values for Tc and ν are compatible with
state-of-the-art results and of similar precision.
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