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Introduction

The EA model

Simplify to the essential properties, disorder and
frustration to yield the Edwards-Anderson (EA) model,

1
H:—E%:JUS['SJ', |s,<\:\/%

where J;; are quenched, random variables.
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Introduction

The EA model

Simplify to the essential properties, disorder and
frustration to yield the Edwards-Anderson (EA) model,

1
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where J;; are quenched, random variables. * —\/\—

Has been investigated for ~ 30 years, however no agreement on general

case. Mean-field model with .

VN’
known as Sherrington-Kirkpatrick (SK) model can be solved in the framework
of “replica-symmetry breaking” (RSB) aris: et 1., 1979/50).

Ji =
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The “pictures”

What happens in finite dimensions?

RSB picture Droplet picture
(Parisi, Mezard, ...) (D. Fisher, Huse, Bray, Moore, ...)
E
Eo -
"Configuration™ "Configuration”

@ many pure states @ only two pure states
@ global (gapless) excitations @ global excitations cost an infinite
@ non-self-averaging and energy

continuous distribution of P(g) @ P(q) is self-averaging
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Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass
physics are
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Critical dimensions

Consider lower and upper critical dimensions for the O(m) EA model:
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Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass
physics are

@ what is the nature of the spin-glass phase away from the mean-field
regime?

@ for which systems and lattice dimensions are there finite-temperature,
non-mean-field spin-glass phase transitions?

@ how can spin glasses in low dimensions be successfully described
analytically?
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Replica symmetry

How can a well-behaved perturbative approach to “real” spin glasses be

found? o 0@ 0E) O(c0)
Ising XY Heisenberg m = o0
(—\
MF \[
SA da
7d (a (a
g (id),_./... _d). ..... @..
) sl sd)
4d 4d 4d 4d
39 —3d —3df- 34
2d) 2d) 2d) 2d)
W 14 1 1
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Slow dynamics

Dynamics is slow in the spin-glass phase due to trapping of the system in
local energy minima separated by barriers —> system is out of equilibrium at
all (human) time scales

EA

E, .

"Configuration”
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Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass
physics are

@ what is the nature of the spin-glass phase away from the mean-field
regime?

@ for which systems and lattice dimensions are there finite-temperature,
non-mean-field spin-glass phase transitions?

@ how can spin glasses in low dimensions be successfully described
analytically?

Due to the difficulties with analytical approaches, a lot of work has focused on
numerical simulations, but

@ simulations suffer from extremely slow relaxation due to the rugged
free-energy landscape

@ the results are afflicted by rather strong finite-size corrections, making it
hard to extrapolate to the thermodynamic limit
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Outline

e The limit of many spin components
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Infinite number of spin components

Consider the EA model in the limit m — oo of an infinite number of spin components.
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Replica symmetry

How can a well-behaved perturbative approach to “real” spin glasses be

found? o1 0@ o)
Ising XY Heisenberg
ME VI 1
8d 3a
7d d 7d
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The limit of many spin components

Infinite number of spin components

Consider the EA model in the limit m — oo of an infinite number of spin components.

@ the model is replica-symmetric and might be used as the starting point for
investigating finite-m models in a 1/m expansion (reen et a1., 1982

@ the system lacks metastability and has a unique ground state, enabling efficient
numerical ground-state calculations
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The limit of many spin components

Metastability

Metastability gradually disappears as m is increased.
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increasing spin-dimension m

The ground state for N spins occupies an m*(N) < mmax(N) dimensional sub-space,

(V) = | (VN HT—1) 2| ~N", =172

(Hastings, 2000)

For each N, a finite number of spin components is sufficient to arrive in the m = oo limit.
CompPhys12 18/39
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Critical dimensions

Consider lower and upper critical dimensions for the O(m) EA model:
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Infinite number of spin components

Consider the EA model in the limit m — oo of an infinite number of spin components.

@ the model is replica-symmetric and might be used as the starting point for
investigating finite-m models in a 1/m expansion (reen et a1., 1982

@ the system lacks metastability and has a unique ground state, enabling efficient
numerical ground-state calculations

@ a (numerically) exact solution is possible for finite systems and T > 0 in the
saddle-point limit m — oo

The model has some peculiarities, however, in that
@ hyper-scaling is violated through dimensional reduction, (d —2)v =2 — «
@ hence the upper critical dimension is lifted t0 d, = 8 (creen ot a1., 1982)
@ the lower critical dimension might be as large as d; = 6 ever and neige1, 2011)
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Infinite number of spin components

Consider the EA model in the limit m — oo of an infinite number of spin components.

@ the model is replica-symmetric and might be used as the starting point for
investigating finite-m models in a 1/m expansion (reen et a1., 1982

@ the system lacks metastability and has a unique ground state, enabling efficient
numerical ground-state calculations

@ a (numerically) exact solution is possible for finite systems and T > 0 in the
saddle-point limit m — oo

The model has some peculiarities, however, in that
@ hyper-scaling is violated through dimensional reduction, (d —2)v =2 — «
@ hence the upper critical dimension is lifted t0 d, = 8 (creen ot a1., 1982)
@ the lower critical dimension might be as large as d; = 6 ever and neige1, 2011)

Hence it is hard to reach the regime 6 < d < 8 of non-trivial critical behavior in
numerical work.
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Spin stiffness and zero-temperature scaling

Edwards-Anderson model: % = —3 3=, . Jisi-sj, s € O(n)
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Spin stiffness and zero-temperature scaling

Edwards-Anderson model: % = —3 3=, . Jisi-sj, s € O(n)

Ferromagnet

t
S
t

AE ~ L4~ resp. 1472

1y
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Spin stiffness and zero-temperature scaling

Edwards-Anderson model: % = —3 3=, . Jisi-sj, s € O(n)

Ferromagnet reieris) MM Spin glass

-»>

t
S
t

AE ~ L4~ resp. 1472

<« l—»
t
L '

|

Distribution of couplings evolving under
RG transformations, asymptotic width
scales as

J(L) ~ JL@.

Spin-stiffness exponent 6 determines
lower critical dimension. For 6 < 0,

E~TTY, v=-—1/6.

Numerically, 8 can be determined from
inducing droplets or domain walls with
a change of boundary conditions,

AE = |Eap — Ep| ~ L.

v
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The limit of many spin components

Hypercubic lattices

Finding ground states

Due to the lack of metastability, a
purely downhill minimization is
sufficient:
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Hypercubic lattices

Finding ground states

Due to the lack of metastability, a
purely downhill minimization is
sufficient:
@ Spin quench: iteratively align each
spin with local molecular field,

S | H; = Z JiS;.
JEN (i)
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@ Over-relaxation: precess spins
around H;,
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‘H;.
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Hypercubic lattices

Finding ground states

Due to the lack of metastability, a
purely downhill minimization is
sufficient:

@ Spin quench: iteratively align each
spin with local molecular field,

S Hi= > J;S;.

JEN (i)

@ Over-relaxation: precess spins
around H;,

Si - H;

S =—Si+2 g

H;.
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The limit of many spin components

Hypercubic lattices

Finding ground states Defect energies

Due to the lack of metastability, a Open/domain-wall boundary
purely downhill minimization is conditions:
sufficient:
@ Spin quench: iteratively align each os0 (d=2)
spin with local molecular field, ' . O/DW
S H = Y J;S;. 020
JEN (i) Y 010
@ Over-relaxation: precess spins 0.05
around H;, 9=-0.96+0.01
Q=027
SH 0'OZ_IIIIIIII TT TT TTTTT
S S+2 zHi' 3 4 6 9 12 18 26 38 56
H|
L
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Hypercubic lattices

Finding ground states
Due to the lack of metastability, a

Defect energies

Open/domain-wall boundary

purely downhill minimization is conditions:
sufficient:
@ Spin quench: iteratively align each 15 4= (d=3)
spin with local molecular field, O/DW
1.4
/
SiIHi= > JsS;. 13
JEN (i) u
1.2
@ Over-relaxation: precess spins
1.1
around H;, 6 =-0.031+0.006
Q=3e-05
SH T T T TT7TT7T T T7TT7T7T T T TTT
S S+2|H|2H’ 3 45 7 10 14 20 28 38
.
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Hypercubic lattices

Finding ground states
Due to the lack of metastability, a

Defect energies

Open/domain-wall boundary

6=0.91+0.02]

Q=2e-05

TT T
14 20

purely downhill minimization is conditions:
sufficient:
@ Spin quench: iteratively align each 19 d=a)
spin with local molecular field, 12 4 O/DW
10
S| H;, = JiS;.
HH= > 5 N
JEN (i) o
6 —
@ Over-relaxation: precess spins
around H;,
4 —
S;-H; T T
Si=-§, +2— =" T "H,. 8 4
.
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Hypercubic lattices

Stiffness exponents Defect energies

Periodic boundary conditions:

Periodic boundary conditions:
@ lower critical dimension 5 <d; <6

@ consistent with d; = 6 estimates
by field theory

@ upper and lower critical
dimensions are distinct

N\
stiffness exponen®

=
i

)
o

-1.0 -05 0.0

=155

1 P/AP

lattice dimension d
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Hypercubic lattices

Stiffness exponents
Periodic boundary conditions:
@ lower critical dimension 5 <d; <6

@ consistent with d; = 6 estimates
by field theory

@ upper and lower critical
dimensions are distinct

Open/domain-wall boundary
conditions:

@ lower critical dimension d; ~ 3

@ subtleties with limits m — oo and
N —

@ possibly probes finite-m behaviour
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© Long-range interactions
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Long-range interactions

Considering a 1d EA model with long-range interactions,

J[j ~ %7

rl.j

it is possible by tuning o to mimic the behavior on hypercubic lattices of variable
dimension d (xot1iar et a1., 1983).
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Long-range interactions

Considering a 1d EA model with long-range interactions,

gy P
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i

it is possible by tuning o to mimic the behavior on hypercubic lattices of variable

dimension d xot1iar et a1., 1983). Since the system is 1d, however, one can treat much
larger systems.

For the m = 1 Ising case, one finds
@ Tsg = 0foro > o, = 1; 0, corresponds to the lower critical dimension

@ a non-trivial spin-glass transition with Tsg > 0for2/3 =0, <o < 1,0, =2/3
corresponds to the upper critical dimension

@ infinite-range behavior for ¢ < 1/2 with & — 0 corresponding to the SK model

This correspondence has been used by Katzgraber, Leuzzi, Moore, Parisi, Young, and
others in recent years to study Ising, Potts, p-spin and Heisenberg spin glasses.
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Phase diagram

We are able to show that through dimensional reduction which for the m = co
long-range model takes the form (d — ©)v = 2 — a with

o_{ 20-1=2/dn 5/8<0,
- 1/4, 1/2<0<5/8.

the critical ranges are changed to o; = 5/8 and o, = 3/4.
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We are able to show that through dimensional reduction which for the m = co
long-range model takes the form (d — ©)v = 2 — a with

20— 1= 2/dcff,
1/4,

-]

5/8 <o,
1/2< 0 <5/8.

the critical ranges are changed to o; = 5/8 and o, = 3/4.

< | T |
d o0 d::7<‘>0 =6 d;n,<oo
i : i m<oo
0 1/ 2 2/ 3 1 o
7 I ' f' >
SK | infinite | non
VB range | ezieiield mean-field Tsc =0
\d ‘
T T T T >
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Phase diagram

We are able to show that through dimensional reduction which for the m = co
long-range model takes the form (d — ©)v = 2 — a with

o_{ 20-1=2/dn 5/8<0,
- 1/4, 1/2<0<5/8.

the critical ranges are changed to o; = 5/8 and o, = 3/4.

One can set up an approximate dictionary between the hypercubic short-range and the
1d long-range systems as

2
dest = ———
T2 -1
or, somewhat more precisely,
_ 2 — n(denr)
et = 0 1

where n(desr) is the exponent of the corresponding short-range model.
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Ground-state calculations

Diluted model

An alternative diluted model with the bond-existence probability falling o 1/7*° has
also been suggested (euzzi et a1., 2008).
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Ground-state calculations

Diluted model

existence probability falling o< 1/r*° has

An alternative diluted model with the bond

also been suggested (euzzi et a1,

2008) .
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Defect energies

Determine defect energies from ground-state calculations for periodic and antiperiodic
boundaries, AE = |Eap — Ep|. The L dependence is expected to be Eu.r o L.
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Defect energies

Determine defect energies from ground-state calculations for periodic and antiperiodic
boundaries, AE = |Eap — Ep|. The L dependence is expected to be Eu.r o L.

Based on these results, we conjecture that
Or =3/4 —o0.

This is consistent with the data for the fully connected model for the full range of
0< 0 <25,
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Defect energies

Determine defect energies from ground-state calculations for periodic and antiperiodic
boundaries, AE = |Eap — Ep|. The L dependence is expected to be Eu.r o L.
Based on these results, we conjecture that

Or =3/4 —o0.

This is consistent with the data for the fully connected model for the full range of
0< 0 <25,

For the diluted model, however, a (previously missed) breakdown of universality is
observed for o > 1, where the graphs become 1d short-range due to a percolation
transition.
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Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian
for all o, including the mean-field regime o < 5/8.
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Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian
for all o, including the mean-field regime o < 5/8.

Sample-to-sample fluctuations are
expected to scale as

)
O'NNN f.

We expect a trivial ©; = 1/2 for
short-range models, but non-trivial
scaling in the mean-field regime.
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Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian
for all o, including the mean-field regime o < 5/8.

Sample-to-sample fluctuations are
expected to scale as T T T T T T

0.50
T
[
K
il
I

)
O'NNN f.

0.40
T
I

We expect a trivial ©; = 1/2 for
short-range models, but non-trivial i T )

S

scaling in the mean-field regime. 2t model g
&3 A diluted
N o fully connected T
glL= i
C; 1 1 1 1 1 1

This shows another instance of non-universality between the two models. The result
for the fully connected model approaches ©; = 1/5 expected for the SK model
(Aspelmeier and Braun, 2010).
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© Critical behavior
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Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.
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At finite-temperatures, results can be found in the saddle-point limit.

Saddle-point equations

Evaluating the partition function

T
g2 st}

/oo [Taste in [Totm— S5t

i Iz

in the saddle-point limit m — oo,
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Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

Saddle-point equations

Evaluating the partition function

T
g2 st}

[T TMaste 0 TTe0n- 9

T i

in the saddle-point limit m — oo,
arrives at the equations (sray/moore, 1982

xi = A7 (1)
Aij = H,~6,~,-—J,-j. (2)
1 _
Ci = (Si-8)=T("); (@)
with the normalization condition
Ci=1.

n
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Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.
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Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

Saddle-point equations Order parameter and susceptibility

Evaluating the partition function Then, the order parameter is
determined by the zero eigenvalues A,
/-oo g Z J"fsiusju
[Taste [To0n—> ")) IS ST~ 1
in the saddle-point limit m — oo, one
arrives at the equations (sray/moore, 1982

xi = (A7) (1)
A,‘j = H,~6,~j—J,-j. (2)
1 _

Cj = —(Si'8)=T(A") (3)

with the normalization condition
Ci=1.
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Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

Saddle-point equations Order parameter and susceptibility

Evaluating the partition function Then, the order parameter is
determined by the zero eigenvalues A,
- g Z J"fSiuSJH
[Taste iin | JRCEDMCIY; _1 (Si)-(S) T !
2y Teped| iy ST
in the saddle-point limit m — oo, one while the spin-glass susceptibility
arrives at the equations (sray/moore, 1982 defined from the connected correlation
function contains the non-zero
xi = @™ (1) | eigenvalues ),
Ay = His;—Jj. 2
;o= | @ XSG—NZZ[S §) — (8- (S
Cj = - (Si-§)=TA )y @)
_r > L
with the normalization condition SN N
Ci=1. y (Aspelmeier and Moore, 2004)
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Correlation length

An estimate of the finite-size correlation length can be extracted from the spin-glass
susceptibility,

3

1/(2c—1
o ORI R
2sin(knin/2) | X2 (kmin) '
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o ORI R
2sin(knin/2) | X2 (kmin) '

FSS above the UCD

Above the UCD, finite-size scaling should
work with L replaced by ¢; ~ L4/,

&L o x (LYY, d > d,.
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1/(2oc—1
o ORI R
2sin(knin/2) | X2 (kmin) '

FSS above the UCD

Above the UCD, finite-size scaling should
work with L replaced by ¢; ~ L4/,

&L o x (LYY, d > d,.

With the effective correlation-length
exponent

IJI _ v, d < du:
dyv/d = dy/2d, d> dy,

a modified hyper-scaling relation valid for all
ois
d—Oen =2—-a.
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Correlation length

An estimate of the finite-size correlation length can be extracted from the spin-glass
susceptibility,

1/(20—1)
€L — 1 [ X(S)G(O) _ 1:|
2sin(Knin/2) | X3 (knin)
FSS above the UCD McMillan’s RG scheme
Above the UCD, finite-size scaling should Using detr = 2/(20 — 1), the correlation-length
work with L replaced by ¢; ~ 14/du scaling for o < 5/8 becomes
e/LY 4 ~ X (LI Ve), d > d. £ X (N4
Lv/4 .
With the effective correlation-length
exponent
IJI _ v, d < du:
dyv/d =dy,/2d, d > dy,

a modified hyper-scaling relation valid for all
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Correlation length

An estimate of the finite-size correlation length can be extracted from the spin-glass
susceptibility,

0 1/(20-1)
& = 1 [ xsa(0) _ 1]
2sin(kmin /2) | X8 (kmin)
FSS above the UCD McMillan’s RG scheme
Above the UCD, finite-size scaling should Using detr = 2/(20 — 1), the correlation-length
work with L replaced by ¢, ~ 14/du scaling for o < 5/8 becomes
e/LY 4 ~ X (LI Ve), d > d. £ X (N4
Lv/4 :
With the effective correlation-length
exponent For o > 5/8 McMillan’s expansion around the
LCD,
S v, d<dy, ar =0T+ T+ ...,
dyv/d =d,/2d, d > dy, dinL
with the conjectured 6 = 3/4 — o yields
a modified hyper-scaling relation valid for all
ois b 12
d—Oen =2—-a. 20 3—4do
y and Tsg < /3 — 4o.
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Critical behavior

Correlation length
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Correlation length

Critical behavior
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Correlation length

Using an elaborate collapsing technique and a jackknife/resampling analysis of
statistical errors, we find:
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Order parameter

In contrast to Lee et al. (2005), we predict a non-zero order parameter in the low-T
phase.
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Order parameter

In contrast to Lee et al. (2005), we predict a non-zero order parameter in the low-T
phase.

Edwards-Anderson parameter Our scaling arguments give
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Order parameter

In contrast to Lee et al. (2005), we predict a non-zero order parameter in the low-T
phase.

Edwards-Anderson parameter Our scaling arguments give
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Order parameter

In contrast to Lee et al. (2005), we predict a non-zero order parameter in the low-T
phase.
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Order parameter

In contrast to Lee et al. (2005), we predict a non-zero order parameter in the low-T
phase.
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Spin-glass correlation length

For xsc we expect the scaling

L'y o <5/8,
XSG v/v 1/v
ovelvy o >5/8.
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ovelvy o >5/8.

For the long-range model, there are no
corrections to the mean-field result
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away from mean-field.
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For the long-range model, there are no
corrections to the mean-field result
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away from mean-field.

To take some of the strong scaling
corrections into account, we consider
the extended scaling form (campoein ec a1,

2006)

xse = (LT)/*C[(LT)""1].
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Spin-glass correlation length

For xsc we expect the scaling
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Spin-glass correlation length

For xsc we expect the scaling
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