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Introduction

The EA model

Simplify to the essential properties, disorder and
frustration to yield the Edwards-Anderson (EA) model,

H = −1
2

∑
i,j

Jij si · sj, |si| =
√

m

where Jij are quenched, random variables.

?
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frustration to yield the Edwards-Anderson (EA) model,

H = −1
2

∑
i,j

Jij si · sj, |si| =
√

m

where Jij are quenched, random variables.

?

Has been investigated for ≈ 30 years, however no agreement on general
case. Mean-field model with

Jij =
±1√

N
,

known as Sherrington-Kirkpatrick (SK) model can be solved in the framework
of “replica-symmetry breaking” (RSB) (Parisi et al., 1979/80).
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Introduction

The “pictures”

What happens in finite dimensions?

RSB picture Droplet picture
(Parisi, Mezard, ...) (D. Fisher, Huse, Bray, Moore, ...)

0E

E

"Configuration"

0E

E

"Configuration"

many pure states
global (gapless) excitations
non-self-averaging and
continuous distribution of P(q)

only two pure states
global excitations cost an infinite
energy
P(q) is self-averaging
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Introduction

Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass
physics are

1 what is the nature of the spin-glass phase away from the mean-field
regime?

2 for which systems and lattice dimensions are there finite-temperature,
non-mean-field spin-glass phase transitions?

3 how can spin glasses in low dimensions be successfully described
analytically?

Due to the difficulties with analytical approaches, a lot of work has focused on
numerical simulations, but

1 simulations suffer from extremely slow relaxation due to the rugged
free-energy landscape

2 the results are afflicted by rather strong finite-size corrections, making it
hard to extrapolate to the thermodynamic limit
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Introduction

Critical dimensions

Consider lower and upper critical dimensions for the O(m) EA model:
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Introduction

Replica symmetry

How can a well-behaved perturbative approach to “real” spin glasses be
found?

2d

3d

4d

5d

6d

7d

8d

2d

3d

4d

5d

6d

7d

8d

MF MF
Replicasymmetric

Repli
ca

symme
try

broke
n

MF MF

7d

8d

7d

8d

2d

3d

4d

5d

6d

2d

3d

4d

5d

6d

M. Weigel (Coventry/Mainz) m → ∞ spin glass CompPhys12 10 / 39



Introduction

Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass
physics are

1 what is the nature of the spin-glass phase away from the mean-field
regime?

2 for which systems and lattice dimensions are there finite-temperature,
non-mean-field spin-glass phase transitions?

3 how can spin glasses in low dimensions be successfully described
analytically?

Due to the difficulties with analytical approaches, a lot of work has focused on
numerical simulations, but

1 simulations suffer from extremely slow relaxation due to the rugged
free-energy landscape

2 the results are afflicted by rather strong finite-size corrections, making it
hard to extrapolate to the thermodynamic limit

M. Weigel (Coventry/Mainz) m → ∞ spin glass CompPhys12 11 / 39



Introduction

Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass
physics are

1 what is the nature of the spin-glass phase away from the mean-field
regime?

2 for which systems and lattice dimensions are there finite-temperature,
non-mean-field spin-glass phase transitions?

3 how can spin glasses in low dimensions be successfully described
analytically?

Due to the difficulties with analytical approaches, a lot of work has focused on
numerical simulations, but

1 simulations suffer from extremely slow relaxation due to the rugged
free-energy landscape

2 the results are afflicted by rather strong finite-size corrections, making it
hard to extrapolate to the thermodynamic limit

M. Weigel (Coventry/Mainz) m → ∞ spin glass CompPhys12 11 / 39



Introduction

Slow dynamics

Dynamics is slow in the spin-glass phase due to trapping of the system in
local energy minima separated by barriers =⇒ system is out of equilibrium at
all (human) time scales

0E

E

"Configuration"
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The limit of many spin components

Infinite number of spin components

Consider the EA model in the limit m→∞ of an infinite number of spin components.

the model is replica-symmetric and might be used as the starting point for
investigating finite-m models in a 1/m expansion (Green et al., 1982)

the system lacks metastability and has a unique ground state, enabling efficient
numerical ground-state calculations

a (numerically) exact solution is possible for finite systems and T > 0 in the
saddle-point limit m→∞

The model has some peculiarities, however, in that

hyper-scaling is violated through dimensional reduction, (d − 2)ν = 2− α
hence the upper critical dimension is lifted to du = 8 (Green et al., 1982)

the lower critical dimension might be as large as dl = 6 (Beyer and Weigel, 2011)

Hence it is hard to reach the regime 6 . d < 8 of non-trivial critical behavior in
numerical work.
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The limit of many spin components

Replica symmetry
How can a well-behaved perturbative approach to “real” spin glasses be
found?
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The limit of many spin components

Metastability

Metastability gradually disappears as m is increased.

The ground state for N spins occupies an m∗(N) ≤ mmax(N) dimensional sub-space,

mmax(N) =
⌊(√

8N + 1− 1
)
/2
⌋
∼ Nµ, µ = 1/2.

(Hastings, 2000)

For each N, a finite number of spin components is sufficient to arrive in the m =∞ limit.
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The limit of many spin components

Critical dimensions

Consider lower and upper critical dimensions for the O(m) EA model:
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The limit of many spin components

Spin stiffness and zero-temperature scaling
Edwards-Anderson model: H = − 1

2

∑
i,j Jij si · sj, si ∈ O(n)
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The limit of many spin components

Spin stiffness and zero-temperature scaling
Edwards-Anderson model: H = − 1

2

∑
i,j Jij si · sj, si ∈ O(n)

Ferromagnet (Peierls)

L

∆E ∼ Ld−1 resp. Ld−2

Spin glass (Bray/Moore, 1987)

Distribution of couplings evolving under
RG transformations, asymptotic width
scales as

J(L) ∼ JLθ(d).

Spin-stiffness exponent θ determines
lower critical dimension. For θ < 0,

ξ ∼ T−ν , ν = −1/θ.

Numerically, θ can be determined from
inducing droplets or domain walls with
a change of boundary conditions,

∆E = |EAP − EP| ∼ Lθ.
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The limit of many spin components

Hypercubic lattices

Finding ground states

Due to the lack of metastability, a
purely downhill minimization is
sufficient:

1 Spin quench: iteratively align each
spin with local molecular field,

S′i ‖ Hi =
∑

j∈N (i)

JijSj.

2 Over-relaxation: precess spins
around Hi,

S′i = −Si + 2
Si ·Hi

|Hi|2
Hi.
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The limit of many spin components

Hypercubic lattices

Stiffness exponents

Periodic boundary conditions:

lower critical dimension 5 ≤ dl ≤ 6

consistent with dl = 6 estimates
by field theory

upper and lower critical
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Long-range interactions

Long-range interactions

Considering a 1d EA model with long-range interactions,

Jij ∼
ϕij

rσij
,

it is possible by tuning σ to mimic the behavior on hypercubic lattices of variable
dimension d (Kotliar et al., 1983).

Since the system is 1d, however, one can treat much
larger systems.

For the m = 1 Ising case, one finds

TSG = 0 for σ > σu = 1; σu corresponds to the lower critical dimension

a non-trivial spin-glass transition with TSG > 0 for 2/3 = σl < σ < 1; σl = 2/3
corresponds to the upper critical dimension

infinite-range behavior for σ < 1/2 with σ → 0 corresponding to the SK model

This correspondence has been used by Katzgraber, Leuzzi, Moore, Parisi, Young, and
others in recent years to study Ising, Potts, p-spin and Heisenberg spin glasses.
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Long-range interactions

Phase diagram

We are able to show that through dimensional reduction which for the m =∞
long-range model takes the form (d −Θ)ν = 2− α with

Θ =

{
2σ − 1 = 2/deff, 5/8 ≤ σ,

1/4, 1/2 ≤ σ < 5/8.

the critical ranges are changed to σl = 5/8 and σu = 3/4.
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long-range model takes the form (d −Θ)ν = 2− α with

Θ =

{
2σ − 1 = 2/deff, 5/8 ≤ σ,

1/4, 1/2 ≤ σ < 5/8.

the critical ranges are changed to σl = 5/8 and σu = 3/4.

One can set up an approximate dictionary between the hypercubic short-range and the
1d long-range systems as

deff =
2

2σ − 1
,

or, somewhat more precisely,

deff =
2− η(deff)

2σ − 1
,

where η(deff) is the exponent of the corresponding short-range model.
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Ground-state calculations

Diluted model

An alternative diluted model with the bond-existence probability falling ∝ 1/r2σ has
also been suggested (Leuzzi et al., 2008).

σ = 0.1
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Ground-state calculations

Diluted model

An alternative diluted model with the bond-existence probability falling ∝ 1/r2σ has
also been suggested (Leuzzi et al., 2008).

σ = 1.0
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Ground-state calculations

Defect energies

Determine defect energies from ground-state calculations for periodic and antiperiodic
boundaries, ∆E = |EAP − EP|. The L dependence is expected to be Edef ∝ Lθ.
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Ground-state calculations

Defect energies

Determine defect energies from ground-state calculations for periodic and antiperiodic
boundaries, ∆E = |EAP − EP|. The L dependence is expected to be Edef ∝ Lθ.

Based on these results, we conjecture that

θLR = 3/4− σ.

This is consistent with the data for the fully connected model for the full range of
0 ≤ σ ≤ 2.5.

For the diluted model, however, a (previously missed) breakdown of universality is
observed for σ > 1, where the graphs become 1d short-range due to a percolation
transition.
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Ground-state calculations

Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian
for all σ, including the mean-field regime σ < 5/8.

Sample-to-sample fluctuations are
expected to scale as

σN ∼ NΘf .

We expect a trivial Θf = 1/2 for
short-range models, but non-trivial
scaling in the mean-field regime.
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This shows another instance of non-universality between the two models. The result
for the fully connected model approaches Θf = 1/5 expected for the SK model
(Aspelmeier and Braun, 2010).
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Critical behavior

Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.
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Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

Saddle-point equations

Evaluating the partition function

∫ ∞
−∞

∏
i,µ

dSµi e

β
2

∑
i,j,µ

JijS
µ
i Sµj ∏

i

δ(m−
∑
µ

(Sµi )
2
)

in the saddle-point limit m→∞,

one
arrives at the equations (Bray/Moore, 1982)

χij = (A−1)ij (1)

Aij = Hiδij − Jij. (2)

Cij =
1
m
〈Si · Sj〉 = T(A−1)ij, (3)

with the normalization condition
Cii = 1.

Order parameter and susceptibility

Then, the order parameter is
determined by the zero eigenvalues λa,

qEA =
1
N

∑
i

〈Si〉 · 〈Si〉
m0

T
N

∑
a

1
λa
,

while the spin-glass susceptibility
defined from the connected correlation
function contains the non-zero
eigenvalues λb,

χSG =
1

Nm2

∑
i,j

[〈Si · Sj〉 − 〈Si〉 · 〈Sj〉]2

=
T2

N

∑
b

1
λ2

b
,

(Aspelmeier and Moore, 2004)
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Critical behavior

Correlation length

An estimate of the finite-size correlation length can be extracted from the spin-glass
susceptibility,

ξL =
1

2 sin(kmin/2)

[
χ0

SG(0)

χ0
SG(kmin)

− 1
]1/(2σ−1)

.

FSS above the UCD
Above the UCD, finite-size scaling should
work with L replaced by ζL ∼ Ld/du ,

ξ/Ld/du ∼ X (Ld/duν t), d ≥ du.

With the effective correlation-length
exponent

ν′ =

{
ν, d < du,

duν/d = du/2d, d ≥ du,

a modified hyper-scaling relation valid for all
σ is

(d −Θ)ν′ = 2− α.

McMillan’s RG scheme
Using deff = 2/(2σ − 1), the correlation-length
scaling for σ < 5/8 becomes

ξ

Lν/4
∼ X (tN1/4

).

For σ > 5/8 McMillan’s expansion around the
LCD,

dT
d ln L

= −θT + cT3
+ . . . ,

with the conjectured θ = 3/4− σ yields

ν =
1

2θ
=

2
3− 4σ

and TSG ∝
√

3− 4σ.
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With the effective correlation-length
exponent

ν′ =

{
ν, d < du,

duν/d = du/2d, d ≥ du,

a modified hyper-scaling relation valid for all
σ is

(d −Θ)ν′ = 2− α.

McMillan’s RG scheme
Using deff = 2/(2σ − 1), the correlation-length
scaling for σ < 5/8 becomes

ξ

Lν/4
∼ X (tN1/4

).

For σ > 5/8 McMillan’s expansion around the
LCD,

dT
d ln L

= −θT + cT3
+ . . . ,

with the conjectured θ = 3/4− σ yields

ν =
1

2θ
=

2
3− 4σ

and TSG ∝
√

3− 4σ.
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Critical behavior

Correlation length
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Critical behavior

Correlation length

Using an elaborate collapsing technique and a jackknife/resampling analysis of
statistical errors, we find:
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Critical behavior

Order parameter

In contrast to Lee et al. (2005), we predict a non-zero order parameter in the low-T
phase.

Edwards-Anderson parameter
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Our scaling arguments give

qEA ∼
{

L−1/4Q(tL1/4), σ ≤ 5/8,
L−β/νQ(tL1/ν), σ > 5/8.

From the conjectured form of the
violation-of-hyperscaling exponent Θ
we expect

β/ν = (3− 4σ)/2,

such that with the approximate
ν = 2/(3− 4σ) the exponent β stays
close to its mean-field value β = 1.
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Critical behavior

Spin-glass correlation length

For χSG we expect the scaling

χSG ∼
{

L1/4C(tL1/4) σ ≤ 5/8,
Lγ/νC(tL1/ν) σ > 5/8.

For the long-range model, there are no
corrections to the mean-field result

γ/ν = 2− η = 2σ − 1

away from mean-field.
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Conclusions

Outlook
Conclusions:

comprehensive discussion of the zero-T and critical behavior of the model

central result is the form θ = 3/4− σ for the stiffness exponent (no rigorous
derivation), leading to σl = 5/8 and σu = 3/4

the critical exponents appear to be rather well described by McMillan’s expansion
around the LCD

we see clear evidence of the exactness of mean-field theory suggested for
σ ≤ 1/2 by Mori (2011)

the model provides one of the relatively few examples of hyperscaling violations
below the UCD

Outlook

the m =∞ model can serve as a starting point for a 1/m expansion

in particular, simulations in a field might allow to check for the existence of a de
Almeida-Thouless line

References:
F. Beyer and M. Weigel, Comput. Phys. Commun. 182, 1883 (2011).

F. Beyer, M. Weigel, and M. A. Moore, Phys. Rev. B 86, 014431 (2012).
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the critical exponents appear to be rather well described by McMillan’s expansion
around the LCD

we see clear evidence of the exactness of mean-field theory suggested for
σ ≤ 1/2 by Mori (2011)

the model provides one of the relatively few examples of hyperscaling violations
below the UCD

Outlook

the m =∞ model can serve as a starting point for a 1/m expansion

in particular, simulations in a field might allow to check for the existence of a de
Almeida-Thouless line
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