## Spin glasses with many components

#### Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

13th Leipzig Workshop on New Developments in Computational Physics, Leipzig, November 30, 2012



#### **Co-workers**

#### Frank Beyer

Institut für Physik Johannes Gutenberg-Universität Mainz Staudinger Weg 7, D-55099 Mainz, Germany





#### Michael A. Moore

School of Physics and Astronomy University of Manchester Manchester, M13 9PL United Kingdom

## Outline

#### Introduction

- 2 The limit of many spin components
- Long-range interactions
  - Ground-state calculations
- 6 Critical behavior



# Outline

#### Introduction

- The limit of many spin components
- 3 Long-range interactions
- 4 Ground-state calculations
- Oritical behavior
- 6) Conclusions

### The EA model

Simplify to the essential properties, disorder and frustration to yield the Edwards-Anderson (EA) model,

$$\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} s_i \cdot s_j, \quad |s_i| = \sqrt{m}$$

where  $J_{ij}$  are *quenched*, random variables.

| ? | <br><b>A</b> | I |
|---|--------------|---|
|   |              |   |
| ¥ | <br>4        | J |

### The EA model

Simplify to the essential properties, disorder and frustration to yield the Edwards-Anderson (EA) model,

$$\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} s_i \cdot s_j, \quad |s_i| = \sqrt{m}$$

where  $J_{ij}$  are *quenched*, random variables.



#### Coupling distributions



## The EA model

Simplify to the essential properties, disorder and frustration to yield the Edwards-Anderson (EA) model,

$$\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} \mathbf{s}_i \cdot \mathbf{s}_j, \quad |\mathbf{s}_i| = \sqrt{m}$$

where  $J_{ij}$  are *quenched*, random variables.

Has been investigated for  $\approx$  30 years, however no agreement on general case. Mean-field model with

$$J_{ij} = \frac{\pm 1}{\sqrt{N}},$$

known as Sherrington-Kirkpatrick (SK) model can be solved in the framework of "replica-symmetry breaking" (RSB) (Parisi et al., 1979/80).



# The "pictures"

#### What happens in finite dimensions?





- many pure states
- global (gapless) excitations
- non-self-averaging and continuous distribution of P(q)

- only two pure states
- global excitations cost an infinite energy
- P(q) is self-averaging

### Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass physics are

### Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass physics are

what is the nature of the spin-glass phase away from the mean-field regime?

### Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass physics are

- what is the nature of the spin-glass phase away from the mean-field regime?
- If or which systems and lattice dimensions are there finite-temperature, non-mean-field spin-glass phase transitions?

## Critical dimensions

Consider lower and upper critical dimensions for the O(m) EA model:

| $\mathcal{O}(1)$  | $\mathcal{O}(1)$ | $\mathcal{O}(2)$ | $\mathcal{O}(3)$ | ••• | $\mathcal{O}(\infty)$ |
|-------------------|------------------|------------------|------------------|-----|-----------------------|
| MF                | MF               | MF               | MF               |     | MF                    |
| :                 | •                | 0<br>0<br>0      | 0<br>0           |     | :                     |
| <u>8</u> <i>d</i> | 8d               | 8d               | 8 <i>d</i>       |     | -8d-                  |
| 7d                | 7d               | 7d               | 7d               |     | 7d                    |
| <u>6d</u>         | -6d-             | -6d              | -6d              |     | -6d                   |
| 5d                | 5d               | 5d               | 5d               |     | 5d                    |
| -4d               | 4d               | 4d               | 4d               |     | 4d                    |
| $\overline{3d}$   | 3d               | 3d               | - 3 <i>d</i>     |     | 3d                    |
| 2d                | 2d               | 2d               | 2d               |     | 2d                    |
| -1d               | 1d               | 1d               | 1d               |     | 1d                    |

### Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass physics are

- what is the nature of the spin-glass phase away from the mean-field regime?
- If or which systems and lattice dimensions are there finite-temperature, non-mean-field spin-glass phase transitions?
- how can spin glasses in low dimensions be successfully described analytically?

## Replica symmetry

How can a well-behaved perturbative approach to "real" spin glasses be found? Q(1) = Q(2) = Q(2)



### Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass physics are

- what is the nature of the spin-glass phase away from the mean-field regime?
- If or which systems and lattice dimensions are there finite-temperature, non-mean-field spin-glass phase transitions?
- how can spin glasses in low dimensions be successfully described analytically?

Due to the difficulties with analytical approaches, a lot of work has focused on numerical simulations, but

### Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass physics are

- what is the nature of the spin-glass phase away from the mean-field regime?
- If or which systems and lattice dimensions are there finite-temperature, non-mean-field spin-glass phase transitions?
- how can spin glasses in low dimensions be successfully described analytically?

Due to the difficulties with analytical approaches, a lot of work has focused on numerical simulations, but

simulations suffer from extremely slow relaxation due to the rugged free-energy landscape

# Slow dynamics

Dynamics is slow in the spin-glass phase due to trapping of the system in local energy minima separated by barriers  $\implies$  system is out of equilibrium at all (human) time scales



CompPhys12 12/39

## Open questions and numerical challenges

Some of the most fundamental open questions in (equilibrium) spin-glass physics are

- what is the nature of the spin-glass phase away from the mean-field regime?
- If or which systems and lattice dimensions are there finite-temperature, non-mean-field spin-glass phase transitions?
- how can spin glasses in low dimensions be successfully described analytically?

Due to the difficulties with analytical approaches, a lot of work has focused on numerical simulations, but

- simulations suffer from extremely slow relaxation due to the rugged free-energy landscape
- the results are afflicted by rather strong finite-size corrections, making it hard to extrapolate to the thermodynamic limit

# Outline

#### Introduction

- 2 The limit of many spin components
  - 3 Long-range interactions
  - 4 Ground-state calculations
  - 5) Critical behavior
  - 6) Conclusions

# Infinite number of spin components

Consider the EA model in the limit  $m \to \infty$  of an *infinite* number of spin components.

### Infinite number of spin components

Consider the EA model in the limit  $m \to \infty$  of an *infinite* number of spin components.

• the model is replica-symmetric and might be used as the starting point for investigating finite-*m* models in a 1/*m* expansion (Green et al., 1982)

# Replica symmetry

How can a well-behaved perturbative approach to "real" spin glasses be found?



### Infinite number of spin components

Consider the EA model in the limit  $m \to \infty$  of an *infinite* number of spin components.

- the model is replica-symmetric and might be used as the starting point for investigating finite-*m* models in a 1/*m* expansion (Green et al., 1982)
- the system lacks metastability and has a unique ground state, enabling efficient numerical ground-state calculations

# Metastability

Metastability gradually disappears as *m* is increased.



# Metastability

Metastability gradually disappears as *m* is increased.



The ground state for N spins occupies an  $m^*(N) \leq m_{\max}(N)$  dimensional sub-space,

$$m_{\max}(N) = \left\lfloor \left( \sqrt{8N+1} - 1 \right) / 2 \right\rfloor \sim N^{\mu}, \ \mu = 1/2.$$

(Hastings, 2000)

For each *N*, a *finite* number of spin components is sufficient to arrive in the  $m = \infty$  limit.

### Infinite number of spin components

Consider the EA model in the limit  $m \to \infty$  of an *infinite* number of spin components.

- the model is replica-symmetric and might be used as the starting point for investigating finite-*m* models in a 1/*m* expansion (Green et al., 1982)
- the system lacks metastability and has a unique ground state, enabling efficient numerical ground-state calculations
- a (numerically) exact solution is possible for finite systems and *T* > 0 in the saddle-point limit *m* → ∞

### Infinite number of spin components

Consider the EA model in the limit  $m \to \infty$  of an *infinite* number of spin components.

- the model is replica-symmetric and might be used as the starting point for investigating finite-*m* models in a 1/*m* expansion (Green et al., 1982)
- the system lacks metastability and has a unique ground state, enabling efficient numerical ground-state calculations
- a (numerically) exact solution is possible for finite systems and *T* > 0 in the saddle-point limit *m* → ∞

The model has some peculiarities, however, in that

• hyper-scaling is violated through dimensional reduction,  $(d-2)\nu = 2 - \alpha$ 

### Infinite number of spin components

Consider the EA model in the limit  $m \to \infty$  of an *infinite* number of spin components.

- the model is replica-symmetric and might be used as the starting point for investigating finite-*m* models in a 1/*m* expansion (Green et al., 1982)
- the system lacks metastability and has a unique ground state, enabling efficient numerical ground-state calculations
- a (numerically) exact solution is possible for finite systems and *T* > 0 in the saddle-point limit *m* → ∞

The model has some peculiarities, however, in that

- hyper-scaling is violated through dimensional reduction,  $(d-2)\nu = 2 \alpha$
- hence the upper critical dimension is lifted to  $d_u = 8$  (Green et al., 1982)

## **Critical dimensions**

Consider lower and upper critical dimensions for the O(m) EA model:

| $\mathcal{O}(1)$ | $\mathcal{O}(1)$ | $\mathcal{O}(2)$ | $\mathcal{O}(3)$ | ••• | $\mathcal{O}(\infty)$ |
|------------------|------------------|------------------|------------------|-----|-----------------------|
| MF               | MF               | MF               | MF               |     | MF                    |
| :                | •                | 0<br>0<br>0      | •                |     | :                     |
| <u>8d</u>        | 8d               | 8d               | 8 <i>d</i>       |     | -8d-                  |
| 7d               | 7d               | 7d               | 7d               |     | 7d                    |
| <u>6d</u>        | -6d-             | -6d              | -6d              |     | -6d                   |
| 5d               | 5d               | 5d               | 5d               |     | 5d                    |
| -4d              | 4d               | 4d               | 4d               |     | 4d                    |
| $\overline{3d}$  | 3d               | 3d               | - 3 <i>d</i>     |     | 3d                    |
| 2d               | 2d               | 2d               | 2d               |     | 2d                    |
| -1d              | 1d               | 1d               | 1d               |     | 1d                    |

### Infinite number of spin components

Consider the EA model in the limit  $m \to \infty$  of an *infinite* number of spin components.

- the model is replica-symmetric and might be used as the starting point for investigating finite-m models in a 1/m expansion (Green et al., 1982)
- the system lacks metastability and has a unique ground state, enabling efficient numerical ground-state calculations
- a (numerically) exact solution is possible for finite systems and *T* > 0 in the saddle-point limit *m* → ∞

The model has some peculiarities, however, in that

- hyper-scaling is violated through dimensional reduction,  $(d-2)\nu = 2 \alpha$
- hence the upper critical dimension is lifted to  $d_u = 8$  (Green et al., 1982)
- the lower critical dimension might be as large as  $d_l = 6$  (Beyer and Weigel, 2011)

## Infinite number of spin components

Consider the EA model in the limit  $m \to \infty$  of an *infinite* number of spin components.

- the model is replica-symmetric and might be used as the starting point for investigating finite-*m* models in a 1/*m* expansion (Green *et al.*, 1982)
- the system lacks metastability and has a unique ground state, enabling efficient numerical ground-state calculations
- a (numerically) exact solution is possible for finite systems and *T* > 0 in the saddle-point limit *m* → ∞

The model has some peculiarities, however, in that

- hyper-scaling is violated through dimensional reduction,  $(d-2)\nu = 2 \alpha$
- hence the upper critical dimension is lifted to  $d_u = 8$  (Green et al., 1982)
- the lower critical dimension might be as large as  $d_l = 6$  (Beyer and Weigel, 2011)

Hence it is hard to reach the regime  $6 \leq d < 8$  of non-trivial critical behavior in numerical work.

#### Spin stiffness and zero-temperature scaling

Edwards-Anderson model:  $\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} s_i \cdot s_j, \ s_i \in O(n)$ 

## Spin stiffness and zero-temperature scaling

Edwards-Anderson model:  $\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} s_i \cdot s_j, \ s_i \in O(n)$ 



## Spin stiffness and zero-temperature scaling

Edwards-Anderson model:  $\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} s_i \cdot s_j, \ s_i \in O(n)$ 



#### Spin glass

#### (Bray/Moore, 1987

Distribution of couplings evolving under RG transformations, asymptotic width scales as

 $J(L) \sim JL^{\theta(d)}.$ 

Spin-stiffness exponent  $\theta$  determines lower critical dimension. For  $\theta < 0$ ,

$$\xi \sim T^{-\nu}, \quad \nu = -1/\theta.$$

Numerically,  $\theta$  can be determined from inducing droplets or domain walls with a change of *boundary conditions*,

$$\Delta E = |E_{\rm AP} - E_{\rm P}| \sim L^{\theta}.$$

# Hypercubic lattices

#### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

# Hypercubic lattices

#### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

Spin quench: iteratively align each spin with local molecular field,

$$\mathbf{S}'_i \parallel \mathbf{H}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} \mathbf{S}_j.$$
### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

Spin quench: iteratively align each spin with local molecular field,

$$\mathbf{S}'_i \parallel \mathbf{H}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} \mathbf{S}_j.$$

Over-relaxation: precess spins around H<sub>i</sub>,

$$\mathbf{S}'_i = -\mathbf{S}_i + 2\frac{\mathbf{S}_i \cdot \mathbf{H}_i}{|\mathbf{H}_i|^2}\mathbf{H}_i.$$

### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

Spin quench: iteratively align each spin with local molecular field,

$$\mathbf{S}'_i \parallel \mathbf{H}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} \mathbf{S}_j.$$

Over-relaxation: precess spins around H<sub>i</sub>,

$$\mathbf{S}'_i = -\mathbf{S}_i + 2\frac{\mathbf{S}_i \cdot \mathbf{H}_i}{|\mathbf{H}_i|^2}\mathbf{H}_i.$$

### **Defect energies**



### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

Spin quench: iteratively align each spin with local molecular field,

$$\mathbf{S}'_i \parallel \mathbf{H}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} \mathbf{S}_j.$$

Over-relaxation: precess spins around H<sub>i</sub>,

$$\mathbf{S}'_i = -\mathbf{S}_i + 2\frac{\mathbf{S}_i \cdot \mathbf{H}_i}{|\mathbf{H}_i|^2}\mathbf{H}_i.$$

### **Defect energies**



### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

 Spin quench: iteratively align each spin with local molecular field,

$$\mathbf{S}'_i \parallel \mathbf{H}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} \mathbf{S}_j.$$

Over-relaxation: precess spins around H<sub>i</sub>,

$$\mathbf{S}'_i = -\mathbf{S}_i + 2\frac{\mathbf{S}_i \cdot \mathbf{H}_i}{|\mathbf{H}_i|^2}\mathbf{H}_i.$$

### **Defect energies**



### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

Spin quench: iteratively align each spin with local molecular field,

$$\mathbf{S}'_i \parallel \mathbf{H}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} \mathbf{S}_j.$$

Over-relaxation: precess spins around H<sub>i</sub>,

$$\mathbf{S}'_i = -\mathbf{S}_i + 2\frac{\mathbf{S}_i \cdot \mathbf{H}_i}{|\mathbf{H}_i|^2}\mathbf{H}_i.$$

### **Defect energies**



### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

Spin quench: iteratively align each spin with local molecular field,

$$\mathbf{S}'_i \parallel \mathbf{H}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} \mathbf{S}_j.$$

Over-relaxation: precess spins around H<sub>i</sub>,

$$\mathbf{S}'_i = -\mathbf{S}_i + 2\frac{\mathbf{S}_i \cdot \mathbf{H}_i}{|\mathbf{H}_i|^2}\mathbf{H}_i.$$

### **Defect energies**



### Finding ground states

Due to the lack of metastability, a purely downhill minimization is sufficient:

Spin quench: iteratively align each spin with local molecular field,

$$\mathbf{S}'_i \parallel \mathbf{H}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} \mathbf{S}_j.$$

Over-relaxation: precess spins around H<sub>i</sub>,

$$\mathbf{S}'_i = -\mathbf{S}_i + 2\frac{\mathbf{S}_i \cdot \mathbf{H}_i}{|\mathbf{H}_i|^2}\mathbf{H}_i.$$

### **Defect energies**



### Stiffness exponents

Periodic boundary conditions:

- lower critical dimension  $5 \le d_l \le 6$
- consistent with d<sub>l</sub> = 6 estimates by field theory
- upper and lower critical dimensions are distinct

### **Defect energies**



### Stiffness exponents

Periodic boundary conditions:

- lower critical dimension  $5 \le d_l \le 6$
- consistent with d<sub>l</sub> = 6 estimates by field theory
- upper and lower critical dimensions are distinct

Open/domain-wall boundary conditions:

- lower critical dimension  $d_l \approx 3$
- subtleties with limits  $m \to \infty$  and  $N \to \infty$
- possibly probes finite-m behaviour

### **Defect energies**



## Outline

Introduction

- 2 The limit of many spin components
- Long-range interactions
  - 4 Ground-state calculations
  - 5 Critical behavior
  - 6 Conclusions

## Long-range interactions

Considering a 1d EA model with long-range interactions,

$$J_{ij}\sim rac{arphi_{ij}}{r_{ij}^\sigma},$$

it is possible by tuning  $\sigma$  to mimic the behavior on hypercubic lattices of variable dimension d (Kotliar et al., 1983).

## Long-range interactions

Considering a 1d EA model with long-range interactions,

$$J_{ij}\sim rac{arphi_{ij}}{r_{ij}^\sigma},$$

it is possible by tuning  $\sigma$  to mimic the behavior on hypercubic lattices of variable dimension d (Kotliar et al., 1983). Since the system is 1d, however, one can treat much larger systems.

Considering a 1d EA model with long-range interactions,

$$J_{ij} \sim rac{arphi_{ij}}{r_{ij}^\sigma},$$

it is possible by tuning  $\sigma$  to mimic the behavior on hypercubic lattices of variable dimension d (Rotliar et al., 1983). Since the system is 1d, however, one can treat much larger systems.

For the m = 1 Ising case, one finds

Considering a 1d EA model with long-range interactions,

$$J_{ij} \sim rac{arphi_{ij}}{r_{ij}^\sigma},$$

it is possible by tuning  $\sigma$  to mimic the behavior on hypercubic lattices of variable dimension d (Kotliar et al., 1983). Since the system is 1d, however, one can treat much larger systems.

For the m = 1 Ising case, one finds

•  $T_{SG} = 0$  for  $\sigma > \sigma_u = 1$ ;  $\sigma_u$  corresponds to the lower critical dimension

## Long-range interactions

Considering a 1d EA model with long-range interactions,

$$J_{ij}\sim rac{arphi_{ij}}{r_{ij}^\sigma},$$

it is possible by tuning  $\sigma$  to mimic the behavior on hypercubic lattices of variable dimension d (Kotliar et al., 1983). Since the system is 1d, however, one can treat much larger systems.

For the m = 1 Ising case, one finds

- $T_{SG} = 0$  for  $\sigma > \sigma_u = 1$ ;  $\sigma_u$  corresponds to the lower critical dimension
- a non-trivial spin-glass transition with  $T_{SG} > 0$  for  $2/3 = \sigma_l < \sigma < 1$ ;  $\sigma_l = 2/3$  corresponds to the upper critical dimension

## Long-range interactions

Considering a 1d EA model with long-range interactions,

$$J_{ij}\sim rac{arphi_{ij}}{r_{ij}^\sigma},$$

it is possible by tuning  $\sigma$  to mimic the behavior on hypercubic lattices of variable dimension d (Kotliar et al., 1983). Since the system is 1d, however, one can treat much larger systems.

For the m = 1 Ising case, one finds

- $T_{SG} = 0$  for  $\sigma > \sigma_u = 1$ ;  $\sigma_u$  corresponds to the lower critical dimension
- a non-trivial spin-glass transition with  $T_{SG} > 0$  for  $2/3 = \sigma_l < \sigma < 1$ ;  $\sigma_l = 2/3$  corresponds to the upper critical dimension
- infinite-range behavior for  $\sigma < 1/2$  with  $\sigma \rightarrow 0$  corresponding to the SK model

## Long-range interactions

Considering a 1d EA model with long-range interactions,

$$J_{ij}\sim rac{arphi_{ij}}{r_{ij}^\sigma},$$

it is possible by tuning  $\sigma$  to mimic the behavior on hypercubic lattices of variable dimension d (Kotliar et al., 1983). Since the system is 1d, however, one can treat much larger systems.

For the m = 1 Ising case, one finds

- $T_{SG} = 0$  for  $\sigma > \sigma_u = 1$ ;  $\sigma_u$  corresponds to the lower critical dimension
- a non-trivial spin-glass transition with  $T_{SG} > 0$  for  $2/3 = \sigma_l < \sigma < 1$ ;  $\sigma_l = 2/3$  corresponds to the upper critical dimension
- infinite-range behavior for  $\sigma < 1/2$  with  $\sigma \rightarrow 0$  corresponding to the SK model

This correspondence has been used by Katzgraber, Leuzzi, Moore, Parisi, Young, and others in recent years to study Ising, Potts, *p*-spin and Heisenberg spin glasses.

### Phase diagram

We are able to show that through dimensional reduction which for the  $m = \infty$  long-range model takes the form  $(d - \Theta)\nu = 2 - \alpha$  with

$$\Theta = \begin{cases} 2\sigma - 1 = 2/d_{\text{eff}}, & 5/8 \le \sigma, \\ 1/4, & 1/2 \le \sigma < 5/8. \end{cases}$$

the critical ranges are changed to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$ .

### Phase diagram

We are able to show that through dimensional reduction which for the  $m = \infty$  long-range model takes the form  $(d - \Theta)\nu = 2 - \alpha$  with

$$\Theta = \begin{cases} 2\sigma - 1 = 2/d_{\text{eff}}, & 5/8 \le \sigma, \\ 1/4, & 1/2 \le \sigma < 5/8. \end{cases}$$

the critical ranges are changed to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$ .



## Phase diagram

We are able to show that through dimensional reduction which for the  $m = \infty$  long-range model takes the form  $(d - \Theta)\nu = 2 - \alpha$  with

$$\Theta = \begin{cases} 2\sigma - 1 = 2/d_{\text{eff}}, & 5/8 \le \sigma, \\ 1/4, & 1/2 \le \sigma < 5/8. \end{cases}$$

the critical ranges are changed to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$ .

One can set up an approximate dictionary between the hypercubic short-range and the 1d long-range systems as

$$d_{\rm eff}=\frac{2}{2\sigma-1},$$

or, somewhat more precisely,

$$d_{\mathrm{eff}} = rac{2 - \eta(d_{\mathrm{eff}})}{2\sigma - 1},$$

where  $\eta(d_{\text{eff}})$  is the exponent of the corresponding short-range model.

## Outline

Introduction

- 2 The limit of many spin components
- 3 Long-range interactions

### Ground-state calculations

Critical behavior

### Conclusions

## **Diluted model**

An alternative diluted model with the bond-existence probability falling  $\propto 1/r^{2\sigma}$  has also been suggested (Leuzzi et al., 2008).



 $\sigma = 0.1$ 

## **Diluted model**

An alternative diluted model with the bond-existence probability falling  $\propto 1/r^{2\sigma}$  has also been suggested (Leuzzi et al., 2008).



 $\sigma = 1.0$ 

## **Defect energies**

Determine defect energies from ground-state calculations for periodic and antiperiodic boundaries,  $\Delta E = |E_{AP} - E_P|$ . The *L* dependence is expected to be  $E_{def} \propto L^{\theta}$ .

## **Defect energies**

Determine defect energies from ground-state calculations for periodic and antiperiodic boundaries,  $\Delta E = |E_{AP} - E_P|$ . The *L* dependence is expected to be  $E_{def} \propto L^{\theta}$ .



 $\sigma$ 

M. Weigel (Coventry/Mainz)

### Defect energies

Determine defect energies from ground-state calculations for periodic and antiperiodic boundaries,  $\Delta E = |E_{AP} - E_P|$ . The *L* dependence is expected to be  $E_{def} \propto L^{\theta}$ .

Based on these results, we conjecture that

$$\theta_{\rm LR}=3/4-\sigma.$$

This is consistent with the data for the fully connected model for the full range of  $0 \leq \sigma \leq 2.5.$ 

## Defect energies

Determine defect energies from ground-state calculations for periodic and antiperiodic boundaries,  $\Delta E = |E_{AP} - E_P|$ . The *L* dependence is expected to be  $E_{def} \propto L^{\theta}$ .

Based on these results, we conjecture that

$$\theta_{\rm LR}=3/4-\sigma.$$

This is consistent with the data for the fully connected model for the full range of  $0 \leq \sigma \leq 2.5.$ 

For the diluted model, however, a (previously missed) breakdown of universality is observed for  $\sigma > 1$ , where the graphs become 1d short-range due to a percolation transition.

## Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian for all  $\sigma$ , including the mean-field regime  $\sigma < 5/8$ .

### Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian for all  $\sigma$ , including the mean-field regime  $\sigma < 5/8$ .



### Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian for all  $\sigma$ , including the mean-field regime  $\sigma < 5/8$ .

Sample-to-sample fluctuations are expected to scale as

$$\sigma_N \sim N^{\Theta_f}$$
.

We expect a trivial  $\Theta_f = 1/2$  for short-range models, but non-trivial scaling in the mean-field regime.

## Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian for all  $\sigma$ , including the mean-field regime  $\sigma < 5/8$ .

Sample-to-sample fluctuations are expected to scale as

$$\sigma_N \sim N^{\Theta_f}$$
.

We expect a trivial  $\Theta_f = 1/2$  for short-range models, but non-trivial scaling in the mean-field regime.



## Distribution of ground-state energies

In contrast to the Ising case, the distributions of ground-state energies are Gaussian for all  $\sigma$ , including the mean-field regime  $\sigma < 5/8$ .

Sample-to-sample fluctuations are expected to scale as

$$\sigma_N \sim N^{\Theta_f}.$$

We expect a trivial  $\Theta_f = 1/2$  for short-range models, but non-trivial scaling in the mean-field regime.



This shows another instance of non-universality between the two models. The result for the fully connected model approaches  $\Theta_f = 1/5$  expected for the SK model

(Aspelmeier and Braun, 2010).

M. Weigel (Coventry/Mainz)

## Outline

Introduction

- 2 The limit of many spin components
- 3 Long-range interactions
- 4 Ground-state calculations

### Critical behavior

### 6 Conclusions

# Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

## Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

Critical behavior

### Saddle-point equations

Evaluating the partition function

$$\int_{-\infty}^{\infty} \prod_{i,\mu} \mathrm{d} S_i^{\mu} e^{\frac{\beta}{2} \sum_{i,j,\mu} J_{ij} S_i^{\mu} S_j^{\mu}} \prod_i \delta(m - \sum_{\mu} (S_i^{\mu})^2)$$

in the saddle-point limit  $m \to \infty$ ,

## Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

Critical behavior

### Saddle-point equations

Evaluating the partition function

$$\int_{-\infty}^{\infty} \prod_{i,\mu} \mathrm{d}S_i^{\mu} e^{\frac{\beta}{2} \sum_{i,j,\mu} J_{ij}S_i^{\mu}S_j^{\mu}} \prod_i \delta(m - \sum_{\mu} (S_i^{\mu})^2)$$

in the saddle-point limit  $m \to \infty$ , one arrives at the equations (Bray/Moore, 1982)

$$\chi_{ij} = (A^{-1})_{ij}$$
 (1)

$$A_{ij} = H_i \delta_{ij} - J_{ij}. \tag{2}$$

$$C_{ij} = \frac{1}{m} \langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle = T(A^{-1})_{ij},$$
 (3)

with the normalization condition  $C_{ii} = 1$ .
# Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.



## Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

Critical behavior

#### Saddle-point equations

Evaluating the partition function

$$\int_{-\infty}^{\infty} \prod_{i,\mu} \mathrm{d} S_i^{\mu} e^{\frac{\beta}{2} \sum_{i,j,\mu} J_{ij} S_i^{\mu} S_j^{\mu}} \prod_i \delta(m - \sum_{\mu} (S_i^{\mu})^2)$$

in the saddle-point limit  $m \to \infty$ , one arrives at the equations (Bray/Moore, 1982)

$$\chi_{ij} = (A^{-1})_{ij}$$
 (1)

$$A_{ij} = H_i \delta_{ij} - J_{ij}. \tag{2}$$

$$C_{ij} = \frac{1}{m} \langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle = T(A^{-1})_{ij},$$
 (3)

with the normalization condition  $C_{ii} = 1$ .

#### Order parameter and susceptibility

Then, the order parameter is determined by the zero eigenvalues  $\lambda_a$ ,

$$q_{\mathrm{EA}} = rac{1}{N} \sum_{i} rac{\langle \mathbf{S}_i 
angle \cdot \langle \mathbf{S}_i 
angle}{m_0} rac{T}{N} \sum_{a} rac{1}{\lambda_a},$$

## Saddle-point calculations

At finite-temperatures, results can be found in the saddle-point limit.

Critical behavior

#### Saddle-point equations

Evaluating the partition function

$$\int_{-\infty}^{\infty} \prod_{i,\mu} \mathrm{d}S_i^{\mu} e^{\frac{\beta}{2} \sum_{i,j,\mu} J_{ij}S_i^{\mu}S_j^{\mu}} \prod_i \delta(m - \sum_{\mu} (S_i^{\mu})^2)$$

in the saddle-point limit  $m \to \infty$ , one arrives at the equations (Bray/Moore, 1982)

$$\chi_{ij} = (A^{-1})_{ij}$$
 (1)

$$A_{ij} = H_i \delta_{ij} - J_{ij}. \tag{2}$$

$$C_{ij} = \frac{1}{m} \langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle = T(A^{-1})_{ij}, \quad (3)$$

with the normalization condition  $C_{ii} = 1$ .

#### Order parameter and susceptibility

Then, the order parameter is determined by the zero eigenvalues  $\lambda_a$ ,

$$q_{\rm EA} = \frac{1}{N} \sum_{i} \frac{\langle \mathbf{S}_i \rangle \cdot \langle \mathbf{S}_i \rangle}{m_0} \frac{T}{N} \sum_{a} \frac{1}{\lambda_a},$$

while the spin-glass susceptibility defined from the *connected correlation function* contains the non-zero eigenvalues  $\lambda_b$ ,

$$\chi_{\text{SG}} = \frac{1}{Nm^2} \sum_{i,j} \left[ \langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle - \langle \mathbf{S}_i \rangle \cdot \langle \mathbf{S}_j \rangle \right]^2$$
$$= \frac{T^2}{N} \sum_b \frac{1}{\lambda_b^2},$$

(Aspelmeier and Moore, 2004)

## Correlation length

An estimate of the finite-size correlation length can be extracted from the spin-glass susceptibility,

$$\xi_L = \frac{1}{2\sin(k_{\min}/2)} \left[ \frac{\chi_{SG}^0(0)}{\chi_{SG}^0(k_{\min})} - 1 \right]^{1/(2\sigma-1)}$$

## **Correlation length**

An estimate of the finite-size correlation length can be extracted from the spin-glass susceptibility,

$$\xi_L = \frac{1}{2\sin(k_{\min}/2)} \left[ \frac{\chi_{SG}^0(0)}{\chi_{SG}^0(k_{\min})} - 1 \right]^{1/(2\sigma-1)}$$

#### FSS above the UCD

Above the UCD, finite-size scaling should work with *L* replaced by  $\zeta_L \sim L^{d/d_u}$ ,

 $\xi/L^{d/d_u} \sim \mathcal{X}(L^{d/d_u\nu}t), \ d \ge d_u.$ 

### Correlation length

An estimate of the finite-size correlation length can be extracted from the spin-glass susceptibility,

$$\xi_L = \frac{1}{2\sin(k_{\min}/2)} \left[ \frac{\chi_{SG}^0(0)}{\chi_{SG}^0(k_{\min})} - 1 \right]^{1/(2\sigma-1)}$$

#### FSS above the UCD

Above the UCD, finite-size scaling should work with *L* replaced by  $\zeta_L \sim L^{d/d_u}$ ,

$$\xi/L^{d/d_u} \sim \mathcal{X}(L^{d/d_u\nu}t), \ d \ge d_u.$$

With the effective correlation-length exponent

$$\nu' = \begin{cases} \nu, & d < d_u, \\ d_u \nu/d = d_u/2d, & d \ge d_u, \end{cases}$$

a modified hyper-scaling relation valid for all  $\sigma$  is

$$(d - \Theta)\nu' = 2 - \alpha.$$

### Correlation length

An estimate of the finite-size correlation length can be extracted from the spin-glass susceptibility,

$$\xi_L = \frac{1}{2\sin(k_{\min}/2)} \left[ \frac{\chi_{SG}^0(0)}{\chi_{SG}^0(k_{\min})} - 1 \right]^{1/(2\sigma-1)}$$

#### FSS above the UCD

Above the UCD, finite-size scaling should work with *L* replaced by  $\zeta_L \sim L^{d/d_u}$ ,

$$\xi/L^{d/d_u} \sim \mathcal{X}(L^{d/d_u\nu}t), \ d \ge d_u$$

With the effective correlation-length exponent

$$\nu' = \begin{cases} \nu, & d < d_u, \\ d_u \nu/d = d_u/2d, & d \ge d_u, \end{cases}$$

a modified hyper-scaling relation valid for all  $\sigma$  is

$$(d - \Theta)\nu' = 2 - \alpha.$$

#### McMillan's RG scheme

Using  $d_{\rm eff}=2/(2\sigma-1),$  the correlation-length scaling for  $\sigma<5/8$  becomes

$$\frac{\xi}{L^{\nu/4}} \sim \mathcal{X}(tN^{1/4}).$$

## Correlation length

An estimate of the finite-size correlation length can be extracted from the spin-glass susceptibility,

$$\xi_L = \frac{1}{2\sin(k_{\min}/2)} \left[ \frac{\chi_{SG}^0(0)}{\chi_{SG}^0(k_{\min})} - 1 \right]^{1/(2\sigma-1)}$$

#### FSS above the UCD

Above the UCD, finite-size scaling should work with *L* replaced by  $\zeta_L \sim L^{d/d_u}$ ,

$$\xi/L^{d/d_u} \sim \mathcal{X}(L^{d/d_u\nu}t), \ d \ge d_u$$

With the effective correlation-length exponent

$$\nu' = \begin{cases} \nu, & d < d_u, \\ d_u \nu/d = d_u/2d, & d \ge d_u, \end{cases}$$

a modified hyper-scaling relation valid for all  $\sigma$  is

$$(d - \Theta)\nu' = 2 - \alpha$$

#### McMillan's RG scheme

Using  $d_{\rm eff}=2/(2\sigma-1),$  the correlation-length scaling for  $\sigma<5/8$  becomes

$$\frac{\xi}{L^{\nu/4}} \sim \mathcal{X}(tN^{1/4}).$$

For  $\sigma > 5/8$  McMillan's expansion around the LCD,

$$\frac{\mathrm{d}T}{\mathrm{d}\ln L} = -\theta T + cT^3 + \dots,$$

with the conjectured  $\theta = 3/4 - \sigma$  yields

$$r = \frac{1}{2\theta} = \frac{2}{3 - 4\sigma}$$

and  $T_{\rm SG} \propto \sqrt{3-4\sigma}$ .

### **Correlation length**



### **Correlation length**



M. Weigel (Coventry/Mainz)

## **Correlation length**

Using an elaborate collapsing technique and a jackknife/resampling analysis of statistical errors, we find:



#### Order parameter

In contrast to Lee *et al.* (2005), we predict a non-zero order parameter in the low-*T* phase.

### Order parameter

In contrast to Lee *et al.* (2005), we predict a non-zero order parameter in the low-*T* phase.



#### Order parameter

In contrast to Lee *et al.* (2005), we predict a non-zero order parameter in the low-*T* phase.



Our scaling arguments give

$$q_{\rm EA} \sim \left\{ \begin{array}{ll} L^{-1/4} \mathcal{Q}(tL^{1/4}), & \sigma \leq 5/8, \\ L^{-\beta/\nu} \mathcal{Q}(tL^{1/\nu}), & \sigma > 5/8. \end{array} \right.$$

#### Order parameter

In contrast to Lee *et al.* (2005), we predict a non-zero order parameter in the low-*T* phase.



Our scaling arguments give

$$q_{\rm EA} \sim \left\{ egin{array}{ll} L^{-1/4} \mathcal{Q}(t L^{1/4}), & \sigma \leq 5/8, \ L^{-eta/
u} \mathcal{Q}(t L^{1/
u}), & \sigma > 5/8. \end{array} 
ight.$$

From the conjectured form of the violation-of-hyperscaling exponent  $\Theta$  we expect

$$\beta/\nu = (3 - 4\sigma)/2,$$

such that with the approximate  $\nu = 2/(3 - 4\sigma)$  the exponent  $\beta$  stays close to its mean-field value  $\beta = 1$ .

#### Order parameter

In contrast to Lee *et al.* (2005), we predict a non-zero order parameter in the low-*T* phase.



 $\sigma$ 

#### Order parameter

In contrast to Lee *et al.* (2005), we predict a non-zero order parameter in the low-*T* phase.



 $\sigma$ 

# Spin-glass correlation length

For  $\chi_{\rm SG}$  we expect the scaling

$$\chi_{\rm SG} \sim \left\{ \begin{array}{ll} L^{1/4} \mathcal{C}(tL^{1/4}) & \sigma \leq 5/8, \\ L^{\gamma/\nu} \mathcal{C}(tL^{1/\nu}) & \sigma > 5/8. \end{array} \right.$$

### Spin-glass correlation length

For  $\chi_{\rm SG}$  we expect the scaling

$$\chi_{\rm SG} \sim \left\{ \begin{array}{ll} L^{1/4} \mathcal{C}(tL^{1/4}) & \sigma \leq 5/8, \\ L^{\gamma/\nu} \mathcal{C}(tL^{1/\nu}) & \sigma > 5/8. \end{array} \right.$$

For the long-range model, there are no corrections to the mean-field result

$$\gamma/\nu = 2 - \eta = 2\sigma - 1$$

away from mean-field.

## Spin-glass correlation length

For  $\chi_{\rm SG}$  we expect the scaling

$$\chi_{\rm SG} \sim \begin{cases} L^{1/4} \mathcal{C}(tL^{1/4}) & \sigma \leq 5/8, \\ L^{\gamma/\nu} \mathcal{C}(tL^{1/\nu}) & \sigma > 5/8. \end{cases}$$

For the long-range model, there are no corrections to the mean-field result

$$\gamma/\nu = 2 - \eta = 2\sigma - 1$$

away from mean-field.



### Spin-glass correlation length

For  $\chi_{\rm SG}$  we expect the scaling

$$\chi_{\rm SG} \sim \begin{cases} L^{1/4} \mathcal{C}(tL^{1/4}) & \sigma \leq 5/8, \\ L^{\gamma/\nu} \mathcal{C}(tL^{1/\nu}) & \sigma > 5/8. \end{cases}$$

For the long-range model, there are no corrections to the mean-field result

$$\gamma/\nu = 2 - \eta = 2\sigma - 1$$

away from mean-field.

To take some of the strong scaling corrections into account, we consider the extended scaling form (Campbell et al., 2006)

$$\chi_{\rm SG} = (LT)^{\gamma/\nu} \tilde{\mathcal{C}}[(LT)^{1/\nu} t].$$



## Spin-glass correlation length

For  $\chi_{\rm SG}$  we expect the scaling

$$\chi_{\rm SG} \sim \begin{cases} L^{1/4} \mathcal{C}(tL^{1/4}) & \sigma \leq 5/8, \\ L^{\gamma/\nu} \mathcal{C}(tL^{1/\nu}) & \sigma > 5/8. \end{cases}$$

For the long-range model, there are no corrections to the mean-field result

$$\gamma/\nu = 2 - \eta = 2\sigma - 1$$

away from mean-field. To take some of the strong scaling corrections into account, we consider the extended scaling form (Campbell et al., 2006)

$$\chi_{\rm SG} = (LT)^{\gamma/\nu} \tilde{\mathcal{C}}[(LT)^{1/\nu} t].$$



### Spin-glass correlation length

For  $\chi_{\rm SG}$  we expect the scaling

$$\chi_{\rm SG} \sim \begin{cases} L^{1/4} \mathcal{C}(tL^{1/4}) & \sigma \leq 5/8, \\ L^{\gamma/\nu} \mathcal{C}(tL^{1/\nu}) & \sigma > 5/8. \end{cases}$$

For the long-range model, there are no corrections to the mean-field result

$$\gamma/\nu = 2 - \eta = 2\sigma - 1$$

away from mean-field. To take some of the strong scaling corrections into account, we consider the extended scaling form (Campbell et al., 2006)

 $\chi_{\rm SG} = (LT)^{\gamma/\nu} \tilde{\mathcal{C}}[(LT)^{1/\nu} t].$ 



## Outline

Introduction

- 2 The limit of many spin components
- 3 Long-range interactions
- 4 Ground-state calculations
- Critical behavior



Conclusions:

• comprehensive discussion of the zero-*T* and critical behavior of the model

- comprehensive discussion of the zero-T and critical behavior of the model
- central result is the form  $\theta = 3/4 \sigma$  for the stiffness exponent (no rigorous derivation), leading to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$

- comprehensive discussion of the zero-T and critical behavior of the model
- central result is the form  $\theta = 3/4 \sigma$  for the stiffness exponent (no rigorous derivation), leading to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$
- the critical exponents appear to be rather well described by McMillan's expansion around the LCD

#### Conclusions

### Outlook

- comprehensive discussion of the zero-T and critical behavior of the model
- central result is the form  $\theta = 3/4 \sigma$  for the stiffness exponent (no rigorous derivation), leading to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$
- the critical exponents appear to be rather well described by McMillan's expansion around the LCD
- we see clear evidence of the exactness of mean-field theory suggested for  $\sigma \leq 1/2$  by Mori (2011)

#### Conclusions

### Outlook

- comprehensive discussion of the zero-T and critical behavior of the model
- central result is the form  $\theta = 3/4 \sigma$  for the stiffness exponent (no rigorous derivation), leading to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$
- the critical exponents appear to be rather well described by McMillan's expansion around the LCD
- we see clear evidence of the exactness of mean-field theory suggested for  $\sigma \leq 1/2$  by Mori (2011)
- the model provides one of the relatively few examples of hyperscaling violations below the UCD

Conclusions:

- comprehensive discussion of the zero-*T* and critical behavior of the model
- central result is the form  $\theta = 3/4 \sigma$  for the stiffness exponent (no rigorous derivation), leading to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$
- the critical exponents appear to be rather well described by McMillan's expansion around the LCD
- we see clear evidence of the exactness of mean-field theory suggested for  $\sigma \leq 1/2$  by Mori (2011)
- the model provides one of the relatively few examples of hyperscaling violations below the UCD

Outlook

- the  $m = \infty$  model can serve as a starting point for a 1/m expansion
- in particular, simulations in a field might allow to check for the existence of a de Almeida-Thouless line

Conclusions:

- comprehensive discussion of the zero-*T* and critical behavior of the model
- central result is the form  $\theta = 3/4 \sigma$  for the stiffness exponent (no rigorous derivation), leading to  $\sigma_l = 5/8$  and  $\sigma_u = 3/4$
- the critical exponents appear to be rather well described by McMillan's expansion around the LCD
- we see clear evidence of the exactness of mean-field theory suggested for  $\sigma \leq 1/2$  by Mori (2011)
- the model provides one of the relatively few examples of hyperscaling violations below the UCD

Outlook

- the  $m = \infty$  model can serve as a starting point for a 1/m expansion
- in particular, simulations in a field might allow to check for the existence of a de Almeida-Thouless line

References:

- F. Beyer and M. Weigel, Comput. Phys. Commun. 182, 1883 (2011).
- F. Beyer, M. Weigel, and M. A. Moore, Phys. Rev. B 86, 014431 (2012).