Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary

Open Free Fermionic Chains : The Repeated Interaction Process

Thierry Platini, Dragi Karevski

Coventry University

29 novembre 2012

Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary

Table of contents

Introduction

- The Repeated Interaction Process (RIP)
- Time Evolution
- Reduced density Matrix
- Applying the RIP to Free Fermionic Systems

Evolution of the Correlation Matrix

- Time Evolution in one time step
- The continuous limit $\tau \to 0$

3 XX Chain

- The Open XX Chain
- Stationary State
- The reduced density matrix

Introduction /	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary

Introduction

The Repeated Interaction Process

S. Attal and Y. Pautrat, Ann. Inst. Henri Poincaré 7, 59 (2006).

Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary
000					

The Repeated Interaction Process

The set up :

✓ System : H_S

✓ Bath : $H_B = \sum_n H_n$ H_n Hamiltonian of the *n*th particle

✓ Interaction : V(t) $V(t) = V_n$ for $t \in](n-1)\tau, n\tau]$

 \checkmark Initial State : $\rho(0)=\rho_{s}(0)\otimes\rho_{B}$

$$\rho_B(0) = \rho_1 \otimes \rho_2 \otimes \ldots \rho_n \otimes \ldots$$

Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary
000					

Time Evolution

Key steps :

✓ Define the operator of evolution U(n)

$$\checkmark$$
 Write $U(n) = L_n(\tau)U(n-1)$

with
$$L_n(\tau) = K_n(\tau) \otimes \exp(-i\tau \sum_{j \neq n} H_j)$$

and
$$K_n(\tau) = \exp[-i\tau(H_s + V_n + H_n)]$$

✓ Define $\rho_s(n) = Tr_B\{\rho(n)\}$

$$\rho(\textit{n}) = \textit{U}(\textit{n}) \; [\; \rho(0) \otimes \rho_{\textit{B}}(0) \;] \; \textit{U}^{\dagger}(\textit{n})$$

Reduced density Matrix $\rho_s(t)$

✓ Express

 $\rho_{s}(n+1) = \operatorname{Tr}_{n} \{ \operatorname{K}_{n}(\tau) \ [\rho_{s}(n) \otimes \rho_{n}] \ \operatorname{K}_{n}^{\dagger}(\tau) \} = L[\rho_{s}(n)]$

L[.] is a completely positive map

 \checkmark Take the continuous limit $\tau \to 0$

$$\partial_t \rho_s(t) = \mathcal{L}[\rho_s(t)] \qquad \mathcal{L}[X] = \lim_{\tau \to 0} \frac{\mathcal{L}[X] - X}{\tau}$$

Renormalization of the coupling system-bath $\lambda \rightarrow \lambda/\sqrt{\tau}$ S. Attal and Y. Pautrat, Ann. Inst. Henri Poincaré 7, 59 (2006).

✓ Lindblad equation

$$\partial_t \rho_s(t) = -i[H_s, \rho_s] - \sum_i \left(\left\{ L_i L_i^{\dagger}, \rho_s \right\} - 2L_i \rho_s L_i^{\dagger} \right)$$

Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary

Considering Fermionic Systems

Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary
	•				

Quadratic Hamiltonian

 \checkmark The System :

$$H_{S} = \sum_{i,j=1}^{L_{S}} (\mathbf{T}_{s})_{i,j} c_{i}^{\dagger} c_{j} \qquad \mathbf{T}_{s}^{\dagger} = \mathbf{T}_{s} \qquad \{c_{i}^{\dagger}, c_{j}\} = \delta_{i,j}$$

✓ The Bath : $H_B = \sum_n H_n$, for each copy *n* of the bath :

$$H_n = \sum_{i,j=1}^{L_b} (\mathbf{T}_b)_{i,j} b_{i,n}^{\dagger} b_{j,n} \qquad \mathbf{T}_b^{\dagger} = \mathbf{T}_b \qquad \{b_{i,n}^{\dagger}, b_{j,n}\} = \delta_{i,j}$$

✓ The Interaction $V(t) = V_n$ $t \in]n\tau - \tau, n\tau]$

$$V_n = \sum_{i}^{L_s} \sum_{j}^{L_b} \left[\Theta_{i,j} c_i^{\dagger} b_{j,n} + \Theta_{i,j}^* b_{j,n}^{\dagger} c_i \right]$$

Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary

Initial State

- ✓ The initial state is uncorrelated
 - $\checkmark \rho(0) = \rho_S(0) \otimes \rho_B(0)$

$$\rho_B(0)=\rho_1(0)\otimes\rho_2(0)\otimes\ldots\rho_n(0)\otimes\ldots$$

 \checkmark The initial state of the entire system is Gaussian

$$\checkmark
ho_{S}(0) \propto \exp[-\sum_{i,j} c_{i}^{\dagger} \mathbf{S}_{i,j} c_{j}]$$
 for any $\mathbf{S}^{\dagger} = \mathbf{S}$

 $\checkmark \rho_n(0) \propto \exp[-\beta_b H_n]$ thermalized at temperature $1/\beta_b$

✓ Under the time evolution $\rho(t)$ remains Gaussian ✓ Importantly → $\rho_s(t)$ remains Gaussian → Two-points correlators $\langle c_j c_i^{\dagger} \rangle$
 Introduction
 Applying the RIP to Free Fermionic Systems
 Gaussian Initial State
 Evolution of the Correlation Matrix
 XX Chain
 Summary

 000
 0
 00
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Evolution of the Correlation Matrix : Definition

We define the matrix $\mathcal{M}^{(n)}$:

.

$$egin{aligned} & (\mathcal{M}_{ extsf{s}})_{i,j} = \langle c_i c_j^{\dagger}
angle & (\mathcal{M}_{ extsf{s},b}^{(n)})_{i,j} = \langle c_i b_{j,n}^{\dagger}
angle \ & (\mathcal{M}_{b,s}^{(n)})_{i,j} = \langle b_{i,n} c_j^{\dagger}
angle & (\mathcal{M}_{b}^{(n)})_{i,j} = \langle b_{i,n} b_{j,n}^{\dagger}
angle \end{aligned}$$

At $t = (n-1)\tau$ the system and the copy *n* of the bath enter in interaction

$$\mathcal{M}^{(n)}(m-\tau) = \left(egin{array}{cc} \mathcal{M}_{\mathsf{s}}(m-\tau) & 0 \ 0 & \mathcal{M}_{\mathsf{b}} \end{array}
ight)$$

 $(\mathcal{M}_{s})_{i,i} = \langle c_{i}c_{j}^{\dagger} \rangle = 1 - \langle n_{s}(i) \rangle.$ $(\mathcal{M}_{b}^{(n)})_{i,i} = 1 - \langle n_{b}(i) \rangle.$

Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary
			•0		

Time Evolution in one time step

Over one time step τ , we show that

$$\begin{split} \mathcal{M}^{(n)}(n\tau) &= \begin{pmatrix} \mathcal{M}_{s}(n\tau) & \mathcal{M}_{s,b} \\ \mathcal{M}_{b,s} & \mathcal{M}_{b} \end{pmatrix} = e^{-i\tau T} \begin{pmatrix} \mathcal{M}_{s}(n\tau-\tau) & 0 \\ 0 & \mathcal{M}_{b} \end{pmatrix} e^{+i\tau T} \\ \text{with} \\ \mathbf{T} &= \begin{pmatrix} \mathbf{T}_{s} & \Theta \\ \Theta^{\dagger} & \mathbf{T}_{b} \end{pmatrix} \end{split}$$

Focussing on
$$\mathcal{M}_s$$
 we get $\mathcal{M}_s(m) = \mathcal{F}[\mathcal{M}_s(m-\tau), \mathcal{M}_b]$

Next step : Developing

$$\mathbf{e}^{-i\mathbf{\tau}\mathbf{T}} \simeq \mathbb{I} - i\mathbf{\tau}\mathbf{T} - \frac{\mathbf{\tau}^2}{2}\mathbf{T}^2 + \dots$$

Introduction Applying the RIP to Free Fermionic Systems Gaussian Initial State Evolution of the Correlation Matrix XX Chain Summary

The continuous limit $\tau \to 0$

In the limit $\tau \rightarrow 0$ we finally have

$$\partial_{t}\mathcal{M}_{s} = -i\left[\mathbf{T}_{s},\mathcal{M}_{s}(t)\right] - \frac{\Lambda^{2}}{2}\left(\left\{\Theta\Theta^{\dagger},\mathcal{M}_{s}(t)\right\} - 2\Theta\mathcal{M}_{b}\Theta^{\dagger}\right)\right)$$
$$\partial_{t}\rho_{s}(t) = -i[H_{s},\rho_{s}] - \sum_{i}\left(\left\{L_{i}L_{i}^{\dagger},\rho_{s}\right\} - 2L_{i}\rho_{s}L_{i}^{\dagger}\right)\right)$$

~

Where do we go from Here

The Open XX Chain

 \checkmark The system is described by

$$H_{XX} = -\frac{\lambda_s}{2} \sum_j \left[\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y \right] - \frac{h}{2} \sum_j \sigma_j^z$$

 \checkmark The bath are described by

$$H_{B} = \sum_{n} \left[H_{n}^{(L)} + H_{n}^{(R)} \right] \qquad H_{n}^{(L)} = -h S_{L,n}^{z} \qquad H_{n}^{(R)} = -h S_{R,n}^{z}$$

 \checkmark The interactions are $V(t) = V_n^{(L)} + V_n^{(R)}$ $t \in]n\tau - \tau, \tau]$

$$V_n^{(L)} = -\frac{\lambda_I}{2} \left[S_{L,n}^x \sigma_1^x + S_{L,n}^y \sigma_1^y \right], \qquad V_n^{(R)} = -\frac{\lambda_I}{2} \left[\sigma_{L_s}^x S_{R,n}^x + \sigma_{L_s}^y S_{R,n}^y \right]$$

 \checkmark The left and right bath are thermalized

$$\rho_n^{(L)} \propto \exp\left(-\beta_L H_n^{(L)}\right), \quad \rho_n^{(R)} \propto \exp\left(-\beta_R H_n^{(R)}\right)$$

Stationary State

 \checkmark Current $J = (\Delta m^z/2) \gamma/(1+\gamma^2) \gamma = \lambda_I^2/2\lambda_s$

Correlation terms

- $\checkmark\,$ The NESS is fully characterized by
 - the magnetization profile
 - its current
 - all other correlation terms vanish

$$egin{aligned} m^{Z} &= 2\langle c_{j}^{\dagger}c_{j}
angle - 1 = m^{*} \ J^{*} &= \langle ic_{j}^{\dagger}c_{j+1} - ic_{j+1}^{\dagger}c_{j}
angle \ c_{i}^{\dagger}c_{j} + c_{j}^{\dagger}c_{i}
angle = 0 \end{aligned}$$

✓ Energy of interaction

$$E_{j,j+1}=-\lambda_s\langle c_j^\dagger c_{j+1}+c_{j+1}^\dagger c_j
angle=0.$$

The reduced density matrix

One can built ρ_s^*

$$\rho_s^* \sim e^{-\sum_l \alpha_l Q_l}, \qquad Q_l = \sum_j \left[c_{j+l}^\dagger c_j + (-1)^l c_j^\dagger c_{j+l} \right] \quad \alpha_l = \alpha_l(m^*, J^*)$$

In the limit $J^* \ll 1$, defining

$$H^{(0)} = -(h/2)\sum_{j}\sigma_{j}^{z} \qquad \mathcal{I}^{z} = i\sum_{j}\left[\sigma_{j}^{x}\sigma_{j+1}^{y} - \sigma_{j+1}^{y}\sigma_{j}^{x}\right]$$

we get

$$\rho_s^* \propto \exp\left[-\beta_{\text{eff}} H^{(0)} + \frac{2J^*}{1 - (m^*)^2} \mathcal{I}^z\right] \qquad \beta_{\text{eff}} = \frac{1}{h} \ln\left(\frac{1 - m^*}{1 + m^*}\right)$$

which at high temperature is $\beta_{eff} \simeq (\beta_L + \beta_R)/2$. W. H. Aschbacher and C. A. Pillet, J. Stat. Phys. 112, 1153 (2003).

Introduction	Applying the RIP to Free Fermionic Systems	Gaussian Initial State	Evolution of the Correlation Matrix	XX Chain	Summary

Summary

Using the Repeated Interaction Process,

- on quadratic fermonic systems,
- prepared in a Gaussian state :

$$\checkmark
ho_{s}(t) = Tr\{
ho(t)\}$$
 is Gaussian $\forall t$

 \checkmark Derive an equation of evolution for the 2 points correlators

$$\partial_t \mathcal{M}_{\mathbf{s}} = -i \left[\mathbf{T}_{\mathbf{s}}, \mathcal{M}_{\mathbf{s}}(t) \right] - \frac{\Lambda^2}{2} \left(\left\{ \Theta \Theta^{\dagger}, \mathcal{M}_{\mathbf{s}}(t) \right\} - 2\Theta \mathcal{M}_{\mathbf{b}} \Theta^{\dagger} \right)$$

 \checkmark Get the exact $\mathcal{M}_{\!s}^*$ for the XX Chains

 \checkmark Construct the reduced density matrix ρ_s^* .

Considering disordered systems J.Phys.A: Math.Theor.(IOPSELECT)43(2010)135003