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Introduction

The Repeated Interaction Process
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S. Attal and Y. Pautrat, Ann. Inst. Henri Poincaré 7, 59 (2006).
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The Repeated Interaction Process

The set up :

X System : HS

X Bath : HB = ∑n Hn

Hn Hamiltonian of the nth particle

X Interaction : V (t)
V (t) = Vn for t ∈](n−1)τ,nτ]

X Initial State : ρ(0) = ρs(0)⊗ρB

ρB(0) = ρ1 ⊗ρ2 ⊗ . . .ρn ⊗ . . .

V(t)

SH

H
B

τ
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Time Evolution

Key steps :

X Define the operator of evolution U(n)

X Write U(n) = Ln(τ)U(n−1)

with Ln(τ) = Kn(τ)⊗exp(−iτ∑j 6=n Hj)

and Kn(τ) = exp[−iτ(Hs +Vn +Hn)]

X Define ρs(n) = TrB{ρ(n)}

ρ(n) = U(n) [ ρ(0)⊗ρB(0) ] U†(n)
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Reduced density Matrix ρs(t)

X Express

ρs(n+1) = Trn{ Kn(τ) [ρs(n)⊗ρn] K †
n (τ) }= L [ρs(n)]

L [.] is a completely positive map

X Take the continuous limit τ → 0

∂tρs(t) = L[ρs(t)] L[X ] = lim
τ→0

L[X ]−X

τ

Renormalization of the coupling system-bath λ → λ/
√

τ
S. Attal and Y. Pautrat, Ann. Inst. Henri Poincaré 7, 59 (2006).

X Lindblad equation

∂tρs(t) =−i[Hs,ρs]−∑
i

({

LiL
†
i ,ρs

}

−2LiρsL†
i

)
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Considering Fermionic Systems
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Quadratic Hamiltonian

X The System :

HS =
LS

∑
i,j=1

(Ts)i,jc
†
i cj T†

s = Ts {c†
i ,cj}= δi,j

X The Bath : HB = ∑n Hn, for each copy n of the bath :

Hn =
Lb

∑
i,j=1

(Tb)i,j b
†
i,nbj,n T†

b = Tb {b†
i,n,bj,n}= δi,j

X The InteractionV (t) = Vn t ∈]nτ− τ,nτ]

Vn =
Ls

∑
i

Lb

∑
j

[

Θi,jc
†
i bj,n +Θ∗

i,jb
†
j,nci

]
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Initial State

X The initial state is uncorrelated

X ρ(0) = ρS(0)⊗ρB(0)

ρB(0) = ρ1(0)⊗ρ2(0)⊗ . . .ρn(0)⊗ . . .

X The initial state of the entire system is Gaussian

X ρS(0) ∝ exp[−∑i,j c†
i Si,jcj ] for any S† = S

X ρn(0) ∝ exp[−βbHn] thermalized at temperature 1/βb

X Under the time evolution ρ(t) remains Gaussian
X Importantly → ρs(t) remains Gaussian
→ Two-points correlators 〈cjc

†
i 〉
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Evolution of the Correlation Matrix : Definition

We define the matrix M (n) :

(Ms)i,j = 〈cic
†
j 〉 (M

(n)
s,b )i,j = 〈cib

†
j,n〉

.

(M
(n)

b,s )i,j = 〈bi,nc†
j 〉 (M

(n)
b )i,j = 〈bi,nb†

j,n〉

At t = (n−1)τ the system and the copy n of the bath enter in
interaction

M (n)(nτ− τ) =
(

Ms(nτ− τ) 0
0 Mb

)

(Ms)i,i = 〈cic
†
j 〉= 1−〈ns(i)〉.

(M
(n)

b )i,i = 1−〈nb(i)〉.
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Time Evolution in one time step

Over one time step τ, we show that

M(n)(nτ) =
(

Ms(nτ) Ms,b

Mb,s Mb

)

= e−iτT

(

Ms(nτ− τ) 0
0 Mb

)

e+iτT

with

T =

(

Ts Θ
Θ† Tb

)

Focussing on Ms we get Ms(nτ) = F [ Ms(nτ− τ), Mb ]

Next step : Developing

e−iτT ≃ I− iτT− τ2

2
T2 + . . .
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The continuous limit τ → 0

In the limit τ → 0 we finally have

∂tMs = −i [ Ts,Ms(t) ] −Λ2

2

( {

ΘΘ†,Ms(t)
}

− 2ΘMbΘ
† )

∂tρs(t) = − i[Hs,ρs] −∑
i

( {

LiL
†
i ,ρs

}

− 2Li ρsL†
i

)
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Where do we go from Here

Quantum Spin Chain (XX)

Toy Model
Fermionic Chain
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The Open XX Chain

X The system is described by

HXX =−λs

2 ∑
j

[

σx
j σx

j+1 +σy
j σy

j+1

]

− h

2 ∑
j

σz
j

X The bath are described by

HB = ∑
n

[

H
(L)
n +H

(R)
n

]

H
(L)
n =−h Sz

L,n H
(R)
n =−h Sz

R,n

X The interactions are V (t) = V
(L)
n +V

(R)
n t ∈]nτ− τ,τ]

V
(L)
n =−λI

2

[

Sx
L,nσx

1 +Sy
L,nσy

1

]

, V
(R)
n =−λI

2

[

σx
Ls

Sx
R,n +σy

Ls
Sy

R,n

]

X The left and right bath are thermalized

ρ(L)
n ∝ exp

(

−βLH
(L)
n

)

, ρ(R)
n ∝ exp

(

−βRH
(R)
n

)



Introduction Applying the RIP to Free Fermionic Systems Gaussian Initial State Evolution of the Correlation Matrix XX Chain Summary

Stationary State
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X Flat magnetization profil mz(x) = m∗

X Current J = (∆mz/2) γ/(1+ γ2) γ = λ2
I /2λs
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Correlation terms

X The NESS is fully characterized by
- the magnetization profile mz = 2〈c†

j cj 〉− 1 = m∗

- its current J∗ = 〈ic†
j cj+1 − ic†

j+1cj 〉
- all other correlation terms vanish 〈c†

i cj + c†
j ci〉= 0

X Energy of interaction Ej,j+1 =−λs〈c†
j cj+1 + c†

j+1cj 〉= 0.

E23E E12
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The reduced density matrix

One can built ρ∗
s

ρ∗
s ∝ e−∑l αl Ql , Ql = ∑

j

[

c†
j+lcj +(−1)lc†

j cj+l

]

αl = αl(m
∗,J∗)

In the limit J∗ ≪ 1, defining

H(0) =−(h/2)∑
j

σz
j J z = i ∑

j

[

σx
j σy

j+1 −σy
j+1σx

j

]

we get

ρ∗
s ∝ exp

[

−βeff H
(0)+

2J∗

1− (m∗)2
J z

]

βeff =
1

h
ln

(

1−m∗

1+m∗

)

which at high temperature is βeff ≃ (βL +βR)/2.
W. H. Aschbacher and C. A. Pillet, J. Stat. Phys. 112, 1153 (2003).
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Summary

Using the Repeated Interaction Process,
- on quadratic fermonic systems,
- prepared in a Gaussian state :

X ρs(t) = Tr{ρ(t)} is Gaussian ∀ t

X Derive an equation of evolution for the 2 points correlators

∂tMs = −i [ Ts,Ms(t) ] −Λ2

2

( {

ΘΘ†,Ms(t)
}

− 2ΘMbΘ
† )

X Get the exact M ∗
s for the XX Chains

X Construct the reduced density matrix ρ∗
s .

Considering disordered systems
J.Phys.A : Math.Theor .(IOPSELECT )43(2010)135003
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