Spin correlations in the 3D Ising model on infinite cuboids

Thomas Neuhaus

Jülich Supercomputing Centre, JSC Forschungszentrum Jülich Jülich, Germany

e-mail : t.neuhaus@fz-juelich.de

in collaboration with W. Janke

November 2012

- worm updates by N.V. Prokof'ev, B.V. Svistunov, PRL 87, 160601 (2001)
- sample graphs of the HTSE in the 3D Ising model
- calculate the two point functions $\Gamma(R)$ and χ
- H.G. Evertz and W. von der Linden in "Simulation on Infinite Lattices" PRL 86, 5164 (2001)

Simulations on Infinite-Size Lattices

H. G. Evertz and W. von der Linden Institut für Theoretische Physik, Technische Universität Graz, 8010 Graz, Austria (Received 4 August 2000)

We introduce a Monte Carlo method, as a modification of existing cluster algorithms, which allows simulations directly on systems of infinite size, and for quantum models also at $\beta = \infty$. All two-point functions can be obtained, including dynamical information. When the number of iterations is increased, correlation functions at larger distances become available. Limits $q \rightarrow 0$ and $\omega \rightarrow 0$ can be approached directly. As examples we calculate spectra for the d = 2 lsing model and for Heisenberg quantum spin ladders with two and four legs.

• "infinite hypercubic boxes" an example

- U. Wolff single cluster update, PRL 1989: a single bond-cluster is flipped, that contains a randomly chosen initial starting site *x*₀
- E+L:

$x_0 = const$

e.g. : x₀ origin of an Cartesian coordinate system

features of the infinite system method

- one never stores an infinite lattice Λ, only the flipped spins are kept in the computer
- after some "Computer Time" in local steps, $N_{\text{Step}} = \mathcal{O}(10^{13-14})$ a region, domain of diameter $d(N_{\text{Step}})$, including x_0 in the center, is equilibrated
- and in D = 3 d can be of size $d^3 = O(2048^3)$ (multispin-coding)
- detailed balance and ergodicity is granted
- measurements of improved estimators of observables for *R* << *d*
- $\Gamma(R)$, ξ_{exp} , ξ_{secnd} and χ
- the theory has no boundary and therefore is of infinite size

can be efficient as only the "needed" dof's are kept and updated

• partition function at β with two spin insertions

$$Z(u, v) = \sum_{Conf.} e^{\beta \sum_{Bonds} s(i)s(j)} s(u)s(v)$$

two point function

$$G(u-v)=\frac{Z(u,v)}{Z(u,u)}$$

zero momentum correlator

$$\Gamma(R) = \frac{1}{N_y N_z} \sum_{u,v} G(u-v) \delta^1(R-u_x+v_x)$$

$$\Gamma(R) \propto oldsymbol{e}^{-R/\xi_{ ext{exp}}} \quad R >> \xi_{ ext{exp}}$$

• magnetic susceptibility: $\chi := \mathcal{N}^{-1} \sum_{R} \Gamma(R)$

Z(u, v)

• dimers
$$\textit{k}_{\textit{i},\eta}=$$
 0, 1 , $\eta=$ 1, 3

Iocal dimer sum

$$\Sigma(i) = \sum_{\eta=1,2,3} (k_{i,\eta} + k_{i-\eta,\eta})$$

odd at u and v

$$mod(\Sigma(u), 2) = mod(\Sigma(v), 2) = 1$$

• even at $i \neq u, v$

 $mod(\Sigma(i), 2) = 0$

Loops of Dimers and one Worm

• dimer chemical potential

$$tanh(\beta) = e^{-\mu}$$

$$\mu = -\ln[tanh(\beta)]$$

dimer representation

$$egin{aligned} Z(oldsymbol{u},oldsymbol{v}) &= \sum_{\textit{Dimers}} e^{-\mu\sum_{i,\eta}k_{i,\eta}} imes \delta^1(1- ext{mod}(\Sigma(oldsymbol{u}),2)) \ & imes \delta^1(1- ext{mod}(\Sigma(oldsymbol{v}),2)) \ & imes \prod_{i
eq oldsymbol{u},oldsymbol{v}} \delta^1(0- ext{mod}(\Sigma(oldsymbol{i}),2)) \end{aligned}$$

- the worm update of PS performs single dimer moves only at v uniform in the directions η and $-\eta$, while in accord with Evertz et. al. u = const is kept constant
- with a Metropolis accept reject decision
- yields a 'Random Walk' of the worm, which always returns to the origin of the coordinate system
- after the worm returns, a new worm is created always emanating form the origin

Biased Sampling [Multicanonical]

biased

$$Z(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{s}) = \sum_{Dimers} \boldsymbol{e}^{-\mu \sum_{i,\eta} k_{i,\eta}} \times \delta^{1} (1 - \operatorname{mod}(\Sigma(\boldsymbol{u}), 2)) \\ \times \delta^{1} (1 - \operatorname{mod}(\Sigma(\boldsymbol{v}), 2)) \\ \times \prod_{i \neq u, v} \delta^{1} (0 - \operatorname{mod}(\Sigma(i), 2)) \\ \times \boldsymbol{e}^{+(1 - \frac{1}{s})(u_{x} - v_{x})/\xi_{exp}}$$

$$Z \propto \exp\left[-\frac{u_x - v_x}{\xi_{exp}} + \left(1 - \frac{1}{s}\right)\frac{u_x - v_x}{\xi_{exp}}\right] \propto \exp\left[-\frac{u_x - v_x}{s\xi_{exp}}\right]$$

o domain size boost : $s = 1.4$

the effort to expand a domain of diameter d is exponential large

• D=3 Ising $\beta < \beta_c$

and scales in units of ξ

• D=3 Ising $\beta < \beta_c$

• scaling variables d/ξ and N_{Step}/ξ^6

however

the effort to evolve a domain to fixed diameter $d/\xi = \text{const}$

scales polynomial in ξ

• D=3 Ising $\beta < \beta_c$

within the domain $\Gamma(R)$ is measured

• D=3 Ising $\beta < \beta_c$

squares by Kim, Souza, Landau, PRE 1996

• reduced temperature $t = 1 - \frac{\beta}{\beta_c}$ with $\beta_c = 0.22165463$ Hasenbusch PRB 2010. • determines $\nu = 0.6298(11)$ without the use of finite size scaling theory

Conclusion

- encouraging demonstration of <u>Monte Carlo simulations</u> and <u>scaling behavior</u> on infinite Cuboids with quantitative result for ν and γ
- competitive method for the ξ determination
- it is not simple to determine a correlation length of $\xi = 50$ in the 3D Ising model
- ongoing project: dedicated workstation in Leipzig to determine large correlation length values in the nearest neighbor 3D Ising theory

β	ξexp	ξ _{exp}	$\frac{\xi_{exp}}{\xi_{exp}} - 1$	BIT
0.204210	2.36429(22)	2.363(1)	0.00054(43)	1
0.211890	3.47865(42)	3.477(2)	0.00047(58)	0
0.215810	4.86348(77)	4.864(3)	-0.00010(63)	0
0.217310	5.8954(17)	5.892(3)	0.00057(58)	0
0.219310	8.7636(34)	8.766(5)	-0.00027(69)	0
0.220200	11.8844(39)	11.884(9)	0.00004(82)	0
β	χ	χ	$\frac{\chi}{\chi} - 1$	BIT
β 0.204210	χ 25.2552(34)	χ 25.254(16)	$\frac{\chi}{\chi} - 1$ 0.00001(64)	BIT 0
β 0.204210 0.211890	χ 25.2552(34) 52.1502(92)	χ 25.254(16) 52.090(40)	$\frac{\frac{\chi}{\chi} - 1}{0.00001(64)}$ 0.00115(78)	BIT 0 1
β 0.204210 0.211890 0.215810	χ 25.2552(34) 52.1502(92) 98.840(20)	$\frac{\chi}{25.254(16)}\\52.090(40)\\98.90(10)$	$\frac{\frac{\chi}{\chi} - 1}{0.00001(64)}$ $0.00115(78)$ $-0.0006(10)$	BIT 0 1 0
β 0.204210 0.211890 0.215810 0.217310	χ 25.2552(34) 52.1502(92) 98.840(20) 143.033(53)	$\begin{array}{c} \chi \\ 25.254(16) \\ 52.090(40) \\ 98.90(10) \\ 143.03(12) \end{array}$	$\frac{\frac{\chi}{\chi} - 1}{0.00001(64)}$ 0.00115(78) -0.0006(10) -0.00004(91)	BIT 0 1 0 0
β 0.204210 0.211890 0.215810 0.217310 0.219310	$\begin{array}{r} \chi \\ 25.2552(34) \\ 52.1502(92) \\ 98.840(20) \\ 143.033(53) \\ 308.17(16) \end{array}$	$\begin{array}{c} \chi \\ 25.254(16) \\ 52.090(40) \\ 98.90(10) \\ 143.03(12) \\ 308.57(31) \end{array}$	$\frac{x}{\chi} - 1$ 0.00001(64) 0.00115(78) -0.0006(10) -0.00004(91) -0.0013(11)	BIT 0 1 0 0 1

Table: Comparison of χ and correlation length values to Hasenbusch 1997.

β	ξ _{2nd}	ξ_{2nd}	$\frac{\xi_{2nd}}{\xi_{2nd}} - 1$	BIT
0.217000	5.63039(71)	5.62 (1)	0.0018(17)	1
0.219000	8.0865(23)	8.03 (4)	0.0070(50)	1
0.220300	12.4302(37)	12.38(15)	0.004(12)	0
0.220600	14.5823(58)	14.61(6)	-0.0018(41)	0
0.221000	19.744(11)	19.77(12)	-0.0012(60)	0
0.221200	24.861(18)	24.87(12)	-0.0007(48)	0
β	χ	χ	$\frac{\chi}{\chi} - 1$	BIT
0.217000	131.285(25)	130.89(40)	0.0029(30)	0
0.219000	264.14(12)	261.6(21)	0.0097(81)	1
0.220300	609.11(30)	605.5(88)	0.005(14)	0
0.220600	831.46(48)	837.0(57)	-0.0066(67)	0
0.221000	1502.63(93)	1518(15)	-0.0101(98)	1
0.001000				

Table: Comparison of ξ and χ values to Landau 1996.