Simulated tempering and magnetizing simulations of a Potts model

Tetsuro Nagai¹ Yuko Okamoto¹ Wolfhard Janke² ¹ Department of Physics, Nagoya University ² NTZ, Leipzig University

Background

- Monte Carlo (MC) and molecular dynamics (MD) simulations are extensively used in computational physics.
- To enhance the sampling efficiency, the generalized-ensemble (aka extended-ensemble) algorithms are developed and applied, such as the multicanonical algorithm (MUCA) [*], simulated tempering (ST) [**], and replica-exchange method [***] (REM) (aka parallel tempering).

[*] BA Berg and T. Neuhaus: Phys. Lett. B 267, 249 (1991) BA Berg and T. Neuhaus: Phys. Rev. Lett. 68, 9 (1992)
[**] AP Lyubartsev et al: JCP 96, 1776 (1992); E. Marinari and G. Parisi: EPL 19, 451 (1992)
[***] K. Hukushima and K. Nemoto: JPSJ 65, 1604 (1996)

Motivation

 Whether the dimensional generalization of ST helps perform simulations better.

 $P(E,T) \propto e^{-\beta E + a(T)}$

$$P(E,T,h) \propto e^{-\beta(E+hM)+a(T,h)}$$

We addressed this question by applying the two-dimensional ST method to the two-dimensional Potts model (and Ising model).

A. Mitsutake and Y. Okamoto.: J. Chem. Phys. **130**, 214105 (2009) <u>T.Nagai</u> and Y. Okamoto: Phys Rev E **86**, 056705 (2012); arXiv: 1205:2523 arXiv:[cond-mat.stat-mech] <u>T.Nagai</u>, Y. Okamoto, and W. Janke,: in preparation.

 $P(E,T) \propto e^{-\beta E + a(T)}$ \square $P(E,T,h) \propto e^{-\beta (E+hM) + a(T,h)}$

Reconstruction of canonical ensembles

One can reconstruct the canonical ensemble via the conditional probability.

(Accordingly, the conditional expectation gives the canonical average.)

Reweighting techniques

They give free energy values (necessary as STM parameters a(T, h)) with preliminary simulations.

WHAM
$$n(E, M) = \frac{\sum_{T_i, h_j} n_{T_i, h_j}(E, M)}{\sum_{T_i, h_j} N_{T_i, h_j} \exp(f(T_i, h_j) - (E - h_j M) / T_i)}$$
$$f(T_i, h_j) = -\log \sum_{E, M} n(E, M) \exp(-(E - h_j M) / T_i),$$

A. Mitsutake and Y. O.: J. Chem. Phys. **130**, 214105 (2009) S. Kumar, et al.: J. Computational Chemistry **13**, 1011 (1992)

MBAR

$$f(T_i, h_j) = -\log \sum_{n=1}^{N} \frac{\exp(-(E_n - h_j M_n)/T_i)}{\sum_{k=1}^{N_T} \sum_{l=1}^{N_h} N_{T_k, h_l} \exp(f(T_k, h_l) - (E_n - h_l M_n)/T_k)}$$

M. Shirts and J. Chodera: J. Chem. Phys. 129, 124105 (2008)

Reweighting techniques

Thermal quantity

$$\begin{split} \langle A \rangle_{T,h} &= \sum_{n=1}^{N} W_{na} A(x_n) \,, \\ W_{na} &= \frac{1}{\langle c_a \rangle} \frac{\exp(-(E_n - hM_n)/T)}{\sum_{k=1}^{N_T} \sum_{l=1}^{N_h} N_{T_k,h_l} \exp(f(T_k,h_l) - (E_n - h_l M_n)/T_k)} \,, \\ \langle c_a \rangle &= \sum_{n=1}^{N} \frac{\exp(-(E_n - hM_n)/T)}{\sum_{k=1}^{N_T} \sum_{l=1}^{N_h} N_{T_k,h_l} \exp(f(T_k,h_l) - (E_n - h_l M_n)/T_k)} \,. \end{split}$$

M. Shirts and J. Chodera: J. Chem. Phys. **129**, 124105 (2008) A. Mitsutake, Y. Sugita, and Y. Okamoto.: J. of Chem. Phys **118**, 6664 (2003).

Review of application to Ising model

Hamiltonian:
$$H = E - hM$$
,
where $E = \sum_{\langle i,j \rangle} \sigma_i \sigma_j$, $M = \sum_i \sigma_i$.
Weight: $P(\{\sigma_i\}, T, h) \propto e^{-(E-hM)/T + a(T,h)}$,

Two-dimensional Ising model (4X4)

T.Nagai and Y. Okamoto: Phys Rev E 86, 056705 (2012); arXiv: 1205:2523 arXiv:[cond-mat.stat-mech]

Binder Cumlant

Those lines can be obtained by a single run for each.

K. Binder, Z. f. Phys. B 43, 119 (1981).

Potts Model

transitions.

equivalent.

model.

Results

• Random walks realized in T, h, E, M, M_{max}

Dimensionless free energy

L=80

Density of states

Wider areas of DOS were gained by STM than by ST.

Area really enlarged?

How the area sampled is exactly different?

Area really enlarged?

How the area sampled is exactly different?

The difference zoomed up Yes, but the red and green segments are among blue regions!

red: by STM green: both blue: by ST

It's not relevant

Reweighting results for h = 0 are shown. The reweighting techniques work properly!! Thus, those representative are sampled well with STM. The ST method draws more samples from the narrower area.

Reweighting around wide area

- Reweighting in a wide area is possible.
- Specific heat and susceptibility. (L=80)

Reweighting around wide area 2

Specific heat *C* converges at smaller *L* as *h* increases.

As an animation

Crossover with respect to h and t

$$t = |T - T_c|/T_c$$
$$L^{2/15}m = \psi(tL^{6/5}, hL^{28/15})$$

$$t^{-14/9}h \ll 1: m \sim t^{1/9}$$

 $t^{-14/9}h \gg 1: m \sim h^{1/14}$

Crossover 2-1

How O_{max} changes is different between Ising and Potts. With negative h and large L, the system behave as two-dimensional Ising model.

$$\sim L^{(1-\beta)/\nu} \sim L^{1/\nu}$$

Crossover 2-2

How O_{max} changes is different between Ising and Potts. With negative h and large L, the system behave as twodimensional Ising model.

$$\sim L^{1/\nu}$$
 $\sim L^{1/\nu}$

Conclusions

<u>We applied STM method to the two-</u> <u>dimensional Potts model (up to L=160).</u>

The tradeoff between sample density and sampling area was not relevant, and we succeeded in reweighting at various conditions.

We also depicted the crossover behaviors.