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Random-Cluster model (RCM)

@ "“On the Random-Cluster Model" (Fortuin & Kasteleyn, Physica Vol.
57/lssue 4, 1972)

e Defined on a graph G = (V, E) with fixed number of vertices NV; here
square lattice

@ Has two parameters 0 < p < 1 and ¢ > 0 with partition function:

Zre(pg) = > P p)!FImPA) gh( ) (1)
ACG

e Summation over all sub-graphs with A = (V, E’) where E' C E.
@ k(A): number of components/clusters; b(A): number of edges in A

@ Restricting to ¢ € {2,3,...} C N and settingp =1 — e %/ is
equivalent to the Potts model (v = €%/ — 1)

v
ZPotts(ﬁt]v Q) = Z Ub(A)qk(A) = ZRC( 1+ ’U7q) (2)
ACG
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RCM: Unification of a variety of stochastic processes

q €{2,3,...} C N: g-state Potts model with critical point v. = /g
» ¢ = 2: Ising model

q — 1: Bond percolation
q 4 0 with fixed v: “Maximal connected spanning sub-graphs”
» Dominant terms are those with k(A) = 1 for connected G

» Bond percolation with p = v/(1 + v) conditioned that resulting graph
is connected

q 4 0 with v ~ g% and 0 < o < 1: “Maximal spanning forest”; for
connected G:
» “Uniform spanning trees"; linked to theory of electrical networks
(Kirchoff's theorem)
» Bond percolation with p = 0.5 conditioned that resulting graph is a
spanning tree
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Swendsen-Wang (SW) Algorithm

@ “Nonuniversal critical dynamics in Monte Carlo simulations”,
(Swendsen and Wang, PRE 58 86-88, 1987 )

Works for integer ¢ > 1: Potts Model

Based on a joint spin-/bond- measure whose marginal measure on the

spins/bonds equals Potts/RCM measure

@ SW switches between both representations:

» Given a spin configuration create a bond between two vertices if they
have the same spin value, otherwise create a bond with probability
p=1-— e8I

» Based on the bond-configuration assign a unique randomly chosen spin
to every component

Generalized to non-integer ¢ > 1 by Chayes and Machta (CM) in
1997 (Physica A, Vol. 239/Issue 4)
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Ising spin configuration
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Ising spin configuration SW Cluster decomposition
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Markov Chain Monte Carlo Simulation for the RCM

@ Is it possible to create new configurations by doing only one edge
operation?

@ Yes: “Monte Carlo study of weighted percolation clusters relevant to
the Potts model*, (M. Sweeny, 1983, PRB Vol. 27/Issue 7)

@ Insertion/Deletion of bonds as update operation

UAb Ak)

@ Acceptance ratio (Metropolis) of trial move: a = min (1,
» Non-local quantity Ak (Ab is trivial)

q

e Dynamical critical exponents z (integrated) for some observables
smaller then for SW/CM algorithm

@ Observables like the “sum of squared cluster sizes” Sy or the ‘“size of
the giant component” C7 have z <0 for ¢ < 2 at v. = /q: "Critical
Speeding Up", (Deng et al., PRL 98 230602, 2007)
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Connectivity problem (Ab = —1, Ak = 0)
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Connectivity

@ Original implementation answers connectivity questions by traversal
» O(N) worst-case (run-)time complexity for a bond operation
» In contrast: Swendsen-Wang has O(1)
@ We used a “Poly-logarithmic fully-dynamic connectivity algorithm”
(Holm et al., J. ACM Vol.48/lssue 4, 2001) which has O(log (N)?)

» In combination with smaller z: Sweeny's algorithm is asymptotically
more efficient in terms of the runtime to create a statistically
independent sample: T/N ~ 7t

@ In practise also constants have to be considered, because they
determine crossover
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Poly-logarithmic fully-dynamic connectivity algorithm

@ Maintain spanning forest (minimal set of edges with the same
connectivity information), i.e., separate edges into:
» Tree-edges (TE) / Bridges
» Non-tree edges (NTE) (Insertion into spanning tree creates a
simple/fundamental cycle)

@ Manipulations on spanning trees; augment to hold information about
incident non-tree edges
@ Separation allows “cheap” Ak = 0 determination for

insertion /deletion of NTE's
In case of deletion of TE's systematic search for possible reconnecting
NTE's necessary

» Achieved by introduction of edge levels [(e) = 0, ..., lmax = |log(N)]

» A spanning tree at level i includes edges with level I(e) > i thus
F=Fo2-2F

max
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Edge separation (Ab = —1, Ak =0)
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Poly-logarithmic fully-dynamic connectivity algorithm

e Edge levels are not static; (partial) modifications after every update
operation with respect to two invariants which assure runtime
bounds:

» F is a maximal spanning tree (with respect to edge level): After
deletion of e search for replacement edge only necessary at levels
i <l(e)

> A spanning tree at level i has size < ||

@ Intuition:
» The higher the level of an edge, the denser the component in which it
is contained
» Keep important edges at low levels and “push” unimportant to higher
levels

@ Spanning trees stored in ET-Trees, which are linearised Eulerian
paths/tours of F
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lllustration of edge level
(Simulation performed at ¢ = 2 and v. = V/2)

Level O Level 2
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Integrated autocorrelation time for Sy observable

(All simulations performed at v. = /q)
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Results: zin(q) at v = /g

@ Two-time scale-ansatz for

normalized
1.5 . .
auto-correlation function
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Results: Average runtime per edge operation
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Results: Effective runtime for S, samples

(UF stands for Union-Find implementation with interleaved Breadth First
Search); Measured relative to Swendsen-Wang
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Conclusions

@ In an asymptotic sense most efficient (in terms of statistical
independent samples) way of simulating the Potts model

@ Space complexity is O(N log (IV)) with large constants; Simulation of
L = 1024 system has approx 2.5 GB memory requirement

Only MCMC algorithm which allows for simulations ¢ < 1

Easily adapted to different dimensions and lattices (in general graphs)

Potential for heuristics, e.g. to reduce space complexity
(lmax — Uma:t:/QJ)
@ Further interesting applications:

» Generalized ensemble simulations of the RCM
» Droplet simulations
» ldentification of loop configurations
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Thank you for your attention!
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