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Requirements for a PRNG and its implementation in a 

subroutine library 

 
1. Statistical robustness 

2. Unpredictability 

3. Long period 

4. Efficiency 

5. Theoretical support 

6. Repeatability 

7. Portability 

8. Skipping over terms (jumping ahead) 

9. Proper initialization 



Major methods for random 

number generation 

1. Linear Congruential Generator (LCG) 

2. Generalized feedback shift register (GFSR) 

 

 
Examples of modern modifications and  

generalizations to the LCG and GFSR methods: 

•     Mersenne Twister  (Matsumoto, Tishimura, 1998),  

 WELL (2006) 

 

•     Combined LCG generators (L’Ecuyer, 1999) 

 

•     Combined Tausworthe generators (L’Ecuyer, 1996;    

 L’Ecuyer, 1999). 



        

    

          



Method for pseudorandom number generation based on 

parallel evolution of toral automorphisms 
 

L.Yu. B., Europhysics Letters (EPL) 95, 10003 (2011). 

L.Yu. B., L.N. Shchur, Computer Physics Communications, 182 (7), 1518-1527 (2011). 

L.Yu. B., L.N. Shchur, Phys.Rev. E 73 , 036701 (2006). 

 

The main highlights of the method are: 

 

Ensemble of transformations: the ensemble of MRG-transformations is 

used and not the single system 

 

Hidden variables: only part of the generated information goes to the 

output of the generator. This helps to suppress correlations, complicates 

deciphering and results in other good properties. 

 

Period length:  The period equals             if one uses the mesh            , 

where      is prime integer.  The period equals              for the mesh       .    

The period can be as large as required. 



Description of the method: the basic unit of the generator 

Characteristic polynomial of the recurrence relation: 

Set of states:               ,   

In practice ,                or                or                         (     is a prime integer). 

The transition function of the generator is defined as an action of the map 

where      points                                   are transformed at each step. 

Equivalent description with the recurrence relation: 

Here 



Description of the method: the basic unit of the generator 

Let              denote the  high-order bit         : 

The output function of the generator 

is defined as follows: 

In other words,                ̶   is an s-bit integer consisting of the bits 

             
In the case                ,          contains precisely 

 
the high-order bits of the integers 

The constructed RNG has much hidden information.  

Indeed,                 bits of each state are the hidden variables; 

these are the bits  that are not involved in constructing  

of the output value  



The regions on the torus and five-bit sequences generated 

by the toral automorphism 

L.Yu. B., Europhysics Letters (EPL) 95, 10003 (2011). 

L.Yu. B., L.N. Shchur, Phys.Rev. E 73 , 036701 (2006). 



Parameters of the new generators 

Results of statistical testing with the  

TestU01 batteries of tests. 



Methods for generation of parallel 

streams of pseudorandom numbers 
1. Random seeding 

2. Parameterization 

3. Block splitting 

 

 

4. Leapfrog 

 

(figures are taken from H. Bauke, S. Mertens, Phys. Rev. E 75, 066701 (2007)) 



Efficient algorithms to jump ahead and  

to initialize subsequences for the chosen generators 





Algorithm to jump ahead for the  

combined generator reduces to 

jumping ahead for every 

particular shift register sequence. 





The library PRAND: single-threaded parallel algorithms for PRNGs  

and their usage 



The library PRAND: multithreaded parallel algorithms for PRNGs 

in order to speed up the calculations 



Parallel algorithms for  GM19,GM31,GM61,GM55.4,GQ58.1,GQ58.3,GQ58.4 

Algorithm «one generator per s threads» 



Parallel algorithm for MT19937: one generator per 227 threads. 



CPU/OC Generator Number of 

threads  per 

block 

Speed-up factor (time 

needed for multi-

threaded calculation 

diveded by time 

needed for single-

threaded calculation) 

 

Multi-

threaded  

=  

1 block 

Multi-

threaded  

=  

64 blocks 

Intel Xeon E5630 

2.53 GHz/ CentOS 

6.1 («Lomonosov» 

supercomputer in 

Moscow State 

University) 

GM19 1024 31.9 259.8 

GM31 1024 96.8 827.0 

GM61 1024 169.5 1424.0 

GM29.1 1024 30.8 252.1 

GM55.4 1024 263.9 1462.3 

GQ58.1 1024 99.8 828.1 

GQ58.3 1023 175.7 1410.9 

GQ58.4 1024 258.4 1469.3 

MRG32K3A 1024 82.4 133.8 

LFSR113 1024 17.2 20.1 

MT19937 227 72.4 191.8 

Efficiency of using GPU capabilities by multi-threaded routines in PRAND library 



Examples of using PRAND library in 

applications, where employing hybrid parallel 

computational systems results in significant 

economic effect 

1. Growth of two-dimensional structures 

 within the model of diffusion limited aggregation 

 

2. Multidimensional numerical integration 

 

3. Modeling of magnetism in  materials  using  spin  models 
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 Multi-GPU multidimensional Monte-Carlo integration  

 with VEGAS algorithm. Efficiency of parallelization. 
 

Dependence of efficiency of parallelization k=T(1)/T(N) on N,  

where T(N) is time needed for the calculation employing N CPU/GPU. 

Stars denote calculations with «Lomonosov» supercomputer in Moscow State University. 

Squares denote calculations with «K-100» supercomputer in  

Keldysh Institute for Applied Mathematics, Russian Academy of Sciences. 

Parallel software was developed using the technologies MPI and CUDA. 



Other PRND libraries which allow to generate  

parallel pseudorandom number streams. Comparison. 

1.  Tina's Random Number Generation Library (TRNG), (Universität 

Magdeburg, Germany) 

  

Among the generators presented in the library, jumping ahead and initialization of 

parallel streams are included only for linear congruential generators, for the MRG 

generators and for the YARN generators, i.e., only for insufficiently reliable 

PRNGs. 

  

2. NAG Numerical Routines for GPU, (Oxford, UK) released in the end of 

2011. 

  

The library contains parallel algorithms for MRG32K3A and MT19937.  The 

library is commercial, source code is not available. 

  

3. cuRAND library,    NVIDIA CUDA Toolkit 4.1, actual version is released  

 in February 2012. 

  

The library contains the generators  MTGP Mersenne Twister, MRG32K3A, 

XORWOW. For MTGP Mersenne Twister initialization is carried out with the 

parameterization method, without  convincing theoretical support. The source 

code is not available. 

 



GNU Scientific Library       http://www.gnu.org/software/gsl/ 

18 standard  PRNGs, including old ones and some modern ones, 

standard realization  for CPU with C language. No realizations for parallel calculations. 

 

Intel MKL Library               http://software.intel.com/en-us/articles/intel-mkl/ 

7 standard PRNGs, efficient realizations for CPU using SIMD ,  i.e. SSE processor instructions 

and 128-bit XMM-registers. No parallelization. 

 

RNGSSELIB         L.Yu. B., L.N. Shchur, Computer Physics Communications, 182 (7), 1518-1527 (2011). 

 

6 modern and reliable PRNGs. Efficient realizations for  CPU using SIMD , i.e. SSE processor 

instructions and 128-bit XMM-registers. The realizations are even more efficient, than  

Intel MKL. No parallelization. 

 

SPRNG                   http://sprng.cs.fsu.edu/ 

Standard PRNGs (old ones). Parallelization with the parameterization method, without  

convincing  theoretical support.    (Florida State University, США) 

 

Other libraries for generation of pseudorandom numbers 

http://www.gnu.org/software/gsl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://sprng.cs.fsu.edu/


Conclusion 
1. Program library PRAND for parallel pseudorandom number generation is 

developed. It contains realizations for the generators, which are based on the 

parallel evolution of toral automorphisms (GM19, GM31, GM61, GM29.1, GM55.4, 

GQ58.1, GQ58.3, GQ58.4), also the generators MRG32K3A, LFSR113 and 

MT19937, i.e. the most reliable  modern PRNG algorithms. 

 

2. For each of the generators the library includes realizations for: 

• the ability to initialize up to          independent streams with the block splitting 

method;  

• efficient versions for CPU which employ SIMD parallelism of modern CPUs 

and corresponding 128-bit XMM-registers and SSE-commands;  

• single-threaded realizations for GPU, which can be used in Monte Carlo 

calculations, where the computational threads and nodes can be used in any 

way chosen by an application; 

• multi-threaded realizations for GPU  employing many GPU threads in order 

to substantially speed up the calculations. 

 

3. The multi-GPU realization for multidimensional Monte-Carlo integration algorithm 

VEGAS is developed. The performance of numerical integration is substantially 

higher when using a single GPU compared to using a single CPU. Also, the 

performance of numerical integration substantially and linearly increases with 

increasing the number of CPU/GPU nodes involved in the calculation. 


