Parallel streams of pseudorandom numbers for

Monte Carlo simulations: Using most reliable

algorithms and applying parallelism of modern
CPUs and GPUs

L.Yu. Barash
Landau Institute for Theoretical Physics RAS

November 30 2012, Universitat Leipzig, CompPhys12

Outline

Methods for pseudorandom number generation

Methods for generation of parallel streams of
pseudorandom numbers

Fast algorithms for skipping over terms in the generators
and for initialization of independent sequences

Library PRAND: single-threaded parallel algorithms for
pseudorandom number generators and their usage

Library PRAND: multithreaded parallel algorithms for
pseudorandom number generators. Speeding up the
calculations. Efficiency of using GPU capabilities by multi-
threaded routines in PRAND library.

Multi-GPU multidimensional Monte-Carlo integration with
VEGAS algorithm. Efficiency of parallelization.

Comparing with other PRND libraries which allow to
generate parallel pseudorandom number streams.

RGO B W D=

Requirements for a PRNG and its implementation in a
subroutine library

Statistical robustness
Unpredictability

Long period

Efficiency

Theoretical support

Repeatability

Portability

Skipping over terms (Jumping ahead)
Proper initialization

Major methods for random

number generation

1. Linear Congruential Generator (LCG)
2. Generalized feedback shift register (GFSR)

Examples of modern modifications and
generalizations to the LCG and GFSR methods:

Mersenne Twister (Matsumoto, Tishimura, 1998),
WELL (2006)

Combined LCG generators (L'Ecuyer, 1999)

Combined Tausworthe generators (L'Ecuyer, 1996;
L'Ecuyer, 1999).

Linear congruential: Tp+1 = (axy, + ¢)(mod M).

Shift register sequence: =, = (a1Zn—1 + - + axTp—k)(mod 2),

L
—1 k k—1
Uy = E Tnsti12 P(z) =2z" —ayz — s — Q.
1=1
: . . U | <1

Mersenne Twister: Xktn = Xptm O (XX} 1) A.
Combined linear congruential MRG32K3A: ¥ = (@%n_z + bxy_z)(mod my)
a = 1403580, b= —810728, «¢=527612, d — —1370589, Vn = (€Y1 + dyy_3)(mod m,),
m, = 232 — 209, m,= 232 —122853 Eﬂ = {:Iﬂ + J}ﬂj(mﬂd mlj_

Combined Tausworthe ® Tp = Tp-—31DTn-25, 8= 18,

generator LE'SR113 is a ® Tp =Tn—20 B Tn_27, S5=2,
combination ® T, =T, 28®Tn_15, S=1T,

of four shift registers: S P Ty P |

Method for pseudorandom number generation based on
parallel evolution of toral automorphisms

L.Yu. B., Europhysics Letters (EPL) 95, 10003 (2011).
L.Yu. B., L.N. Shchur, Computer Physics Communications, 182 (7), 1518-1527 (2011).
L.Yu. B., L.N. Shchur, Phys.Rev. E 73, 036701 (2006).

The main highlights of the method are:

Ensemble of transformations: the ensemble of MRG-transformations 1s
used and not the single system

Hidden variables: only part of the generated information goes to the
output of the generator. This helps to suppress correlations, complicates
deciphering and results in other good properties.

Period length: The period equals p?> —1 if one uses the mesh p X p |
where p is prime integer. The period equals 3-2™~% for the mesh2™ x 2™
The period can be as large as required.

Description of the method: the basic unit of the generator

Set of states: R = L?, L={0,1,...,9—1} x{0,1,...,9—1}
In practice, g=2¢ or g=p org=p-2t, (p isaprimeinteger).

The transition function of the generator is defined as an action of the map
xz(n) :E?(;n_l)
() =¥ (en) oo
where s points (¢ =10,1,...,s —1) are transformed at each step.

Equivalent description with the recurrence relation:
2™ = kg1 — g2"=2)(mod g)
y™ = ky" ™ — gy~ (mod g)

Here gk =Tr (M), q=det M

Characteristic polynomial of the recurrence relation:

f(z) =2°—kx +q.

Description of the method: the basic unit of the generator

Let oi™ denote the high-order bit z."¥ o™ = 25\ /g].

1

The output function of the generator G : L* — {0,1,...,2° — 1}

is defined as follows: an =352t al™ . 20,

=0 1

In other words, G, — 1S an s-bit integer consisting of the bits

(n) _(n)

(n) — om
g ,0q . as . Inthe case g =2

, @n contains precisely

the high-order bits of the integers xén) \ xg"’), .. ,:cgyi)l.

The constructed RNG has much hidden information.
Indeed, s(m — 1) bits of each state are the hidden variables;
these are the bits that are not involved in constructing

of the output value a,,.

The regions on the torus and five-bit sequences generated
by the toral automorphism

L.Yu. B., Europhysics Letters (EPL) 95, 10003 (2011).
L.Yu. B., L.N. Shchur, Phys.Rev. E 73, 036701 (2006).

Parameters of the new generators

Generator g k q v Period
GM19 2™ 1 15 | 28 [1| 27-10"
GM31 Rk 1l 11 | 14 | 1| 4.6-10"
GM61 28 N 24 | 74 | 1| 53-10%
GM?29.1-SSE 229 _ 3 4 2 | 1| =28-10"
GM55.4-SSE | 16(2°" —129) | 256 | 176 | 4 | > 5.1-10%
GQ58.1-SSE | 229(229 — 3) 8 | 48 | 1| >28-10'
GQ58.3-SSE | 227(2% — 3) 8 | 48 | 3| >28-10'
GQ58.4-SSE | 2%(2*? —3) | 8 | 48 |4 | >28-10"

Results of statistical testing with the
TestUO1 batteries of tests.

Generator SmallCrush | Diehard | Crush | Bigcrush
MRG32k3a 0,0,0 0,0,0 0,0,0 0,0,0
LFSR113 0,0,0 1,0,0 6,6, 6 6,6, 6
MT19937 0,0,0 0,0,0 2,2,2 2,2,2
GM29-SSE 0,0,0 0,0,0 0,0,0 0,0,0
GM55.4-SSE 0,0,0 0,0,0 0,0,0 0,0,0
GQ58.1-SSE 0,0,0 0,0,0 0,0,0 0,0,0
GQ58.3-SSE 0,0,0 0,0,0 0,0,0 0,0,0
GQ58.4-SSE 0,0,0 0,0,0 0,0,0 0,0,0

Methods for generation of parallel

streams of pseudorandom numbers

1. Random seeding
2. Parameterization
3. Block splitting mom=e [— . —

4 Leapfrog R e R

(figures are taken from H. Bauke, S. Mertens, Phys. Rev. E 75, 066701 (2007))

Efficient algorithms to jump ahead and
to initialize subsequences for the chosen generators

1. Jumping ahead for the generators GM19, GM31, GM61, GM29.1, GM55 .4,
GQ58.1, GQ5H8.3, GQ5H8.4, where the state transforms with the recurrence
relation (™ = kz("~Y — ¢2("=2)(mod g).

One can show that the following equation holds

2" = k,at™ — ¢,2(9 (mod g),

where ky = k; q1 =¢; kon = ki —2¢n(mod g); ¢2n = ¢2(mod g).

This allows to quickly calculate the coefficients which are necessary to jump
ahead 2' elements for any integer 7. In order to efficiently skip over a sequence
of arbitrary length n one has to skip over terms of length 2%, ..., 2%, where

n =2 42" 4 ... 4 2% ig the binary representation of integer n. Also, one can
show that

ko=2; ki=k; kny1=kkn—gkn_1(mod g); ¢, =q"(mod g).

2. Jumping ahead for the generator MRG32K3A.

T, Yn, 0 a b c 0 d
Consider X,, = [zp-1 |, ¥Yn=|Yn-1 |, A=|1 0 0),B=(1 0 O
Lpn—2 Yn—2 0 1 0 0 1 0

This allows to write the state transformation function for MRG32K3A as
Xpt1 = A X,(mod my),
Y,i1 = BY,(mod ms).

The state of the generator is a pair of vectors X,,, Y,,. Therefore, in order to
skip over n numbers, one has to find n-th power of matrices A and B.

Let n = 2% + 24 4 ... 4 2! be the binary representation of integer n,
then A" = A%2°A%" ... A% (mod m;), B® = B?°B?" ...B?>" (mod my), i.e.
jumping ahead of a block of length n can be carried out with O(log n) operations.

Function MRG32K3A_init_sequence allows to initialize up to 10'® independent
parallel sequences of pseudorandom numbers, with length of each sequence up
to 1038,

3. Jumping ahead for the generator LE'SR113.

® Ty, =Tp_31 D Tn_25, S=18,
Algorithm to jump ahead for the

combined generator reduces to ® T, =Ty 929D Ty o7, S=2,
jumping ahead for every
particular shift register sequence. ® Ty =Tpn_28DTn_15 S=171,

® Ty, =Ty 25D Tp_22, 8= 13.

32
Ln = (xn—p + In—erq)(mOd 2), Up = Zi’fis+l—12—l
1=1

Then the following holds: z,, = (%, —2¢p + Tp_2ept2¢4)(mod 2).

In order to jump ahead of a block of length 2¢, we calculate the bits
Tonp, Lan(pt1), - - -y Lan(2p—1) for n = 0,1,..., e using the known values of the
bits zg, x1,...,231.

Function LFSR113_init_sequence allows to initialize 4 - 10'® independent
sequences of pseudorandom numbers, with length of each sequence up to 10'°;

Function LFSR113_init_long_sequence allows to initialize 4-10° independent
sequences of pseudorandom numbers, with length of each sequence up to 3-10%°.

4. Jumping ahead for the generator MT19937.

The generator MT19937 has a linear structure in its algorithm, which can
be written as Y, 11 = AY,, (mod 2), where Y, is the generator state, the size
of matrix A is 19937 x 19937, calculation of A™ would be extremely slow and
would require a lot of memory.

Another method [*|: for every v € N the following relation holds
A'Yo=g,(A)Yo=ar Y1 +ap1Yr2+---+a2¥i +a Yo, (1)
where k = 19937, coefficients a; € {0,1},7 =1,...,k, and polynomial g,(z) =

arz® 1 + ...+ asx + a; in the field [Fy depend on v. [*] contains the method
of calculation of the polynomial g, for arbitraru fixed wv.

Calculation of (1) can be carried out using massive parallelism of GPU in
order to speed up the calculations.

|*| Haramoto et.al., INFORMS Journal on Computing 20 (3), 385-390 (2008).

The library PRAND: single-threaded parallel algorithms for PRNGs
and their usage

Interface:

__device__ void RNG_init (RNG_statex* state);

__device__ void RNG_init_sequence (RNG_state* state,
unsigned SequenceNumber) ;

__device__ void RNG_SkipAhead (RNG_state* state,
unsigned long long offset);

__device__ unsigned int RNG_generate (RNG_state* state);

__device__ float RNG_generate_uniform_float (RNG_state* state);

Name of each actual fuction in PRAND library contains a particular PRNG
name instead of RNG.

The library PRAND: multithreaded parallel algorithms for PRNGs
in order to speed up the calculations

Interface:

void RNG_initialize (RNG_state* state);

void RNG_initialize_sequence (RNG_state* state,
unsigned SequenceNumber) ;

void RNG_skip_ahead (RNG_State* state,
unsigned long long offset);

void RNG_generate_array (RNG_statex* state,
unsigned int * out,
unsigned int length);

void RNG_generate_uniform_float_array (RNG_state* state,
float * out,
unsigned int length);

Name of each actual fuction in PRAND library contains a
particular PRNG name instead of RNG.

Parallel algorithms for GM19,GM31,GM61,GM55.4,GQ58.1,GQ58.3,GQ58.4

Algorithm «one generator per s threads»

En) = k:c?(;n_l) — qxgn_z)(mod g) and

a,gn) = LQ"’ajrgn)/gJ . 2 for one of the # = 0,1,...,5s — 1. Then we apply the
sinchronization of threads inside a block which includes waiting for the completion
of all calculations. Then, if the tread number is divisible by s, it sums all the
calculated values of a,,gn), i.e., calculates the output value a(™) = Zf;& a,gn).
Every s threads generate a single sequence of length length. Each set of s

(4) .(2)

threads has its own initial conditions (xo hT) The length of output sequence

Each thread calculates the values of x

should be 1length*N/s, where N — total number of threads used in the calculation.
Prior to generating pseudorandom numbers, each thread carries out

a corresponding jumping ahead to the start of it’s sequence.
The number of threads in each block should be divisible by s.

Parallel algorithm for MT19937: one generator per 227 threads.

Xhtn = Xptm O (Xj[xj 1) A.

The algorithm with a significant speed-up: using in parallel n — m = 227
threads in order to update the generator state. Indeed, in order to calculate
the value of xj,, one needs to know the values of xy,xr11,Xg1m, therefore
the calculation of x,,,Z,11,...,Z2n—m—1 can be carried out independently
using the values of xg,x1,...,2,_1, and in order to calculate the value of
Ton—m one needs to know z,,.

For the further speed-up, we will use sets of 227 threads in order to
fill in different sections of the output array. As it’s first step each set of
threads jumps ahead prior to staring the calculations in order to go to the
begginning of it’s own section. The size of each section of the array is selected
experimentally, such that the time needed for jumping ahead would be only
a small part of the time needed to generate pseudorandom numbers.

Efficiency of using GPU capabilities by multi-threaded routines in PRAND library

CPU/OC Generator Number of| Speed-up factor (time
threads per|needed for multi-
block threaded calculation

diveded by time
needed for single-
threaded calculation)

Multi- Multi-
threaded |threaded
1 block 64 blocks
Intel Xeon E5630 |GM19 1024 31.9 259.8
2.53 GHz/ CentOS
6.1 («Lomonosovy|GM31 1024 96.8 827.0
sUpErcomputer . Inj 59 1024 169.5 1424.0
Moscow State
University) GM29.1 1024 30.8 252.1
GM55.4 1024 263.9 1462.3
GQ58.1 1024 99.8 828.1
GQ58.3 1023 175.7 1410.9
GQ58.4 1024 258.4 1469.3
MRG32K3A 1024 82.4 133.8
LFSR113 1024 17.2 20.1
MT19937 227 72.4 191.8

Examples of using PRAND library in
applications, where employing hybrid parallel
computational systems results in significant
economic effect

1. Growth of two-dimensional structures
within the model of diffusion limited aggregation

2. Multidimensional numerical integration

3. Modeling of magnetism in materials using spin models

Multi-GPU multidimensional Monte-Carlo integration
with VEGAS algorithm. Efficiency of parallelization.

Dependence of efficiency of parallelization k=T(1)/T(N) on N,

where T(N) is time needed for the calculation employing N CPU/GPU.

Stars denote calculations with «Lomonosov» supercomputer in Moscow State University.
Squares denote calculations with «K-100» supercomputer in

Keldysh Institute for Applied Mathematics, Russian Academy of Sciences.

Parallel software was developed using the technologies MPI and CUDA.

90 -
=

80 - -
%k

704

60 -

50 -
k i
40 - |
30 o

] ;o %
20 B e

10 ﬁ;;/

20 40 60 80 100 120 140 160 18
N

Other PRND libraries which allow to generate
parallel pseudorandom number streams. Comparison.

1. Tina's Random Number Generation Library (TRNG), (Universitét
Magdeburg, Germany)

Among the generators presented in the library, jumping ahead and initialization of
parallel streams are included only for linear congruential generators, for the MRG
generators and for the YARN generators, i.e., only for insufficiently reliable
PRNGs.

2. NAG Numerical Routines for GPU, (Oxford, UK) released in the end of
2011.

The library contains parallel algorithms for MRG32K3A and MT19937. The
library is commercial, source code is not available.

3. CURAND library, NVIDIA CUDA Toolkit 4.1, actual version is released
in February 2012.

The library contains the generators MTGP Mersenne Twister, MRG32KS3A,
XORWOW. For MTGP Mersenne Twister initialization is carried out with the
parameterization method, without convincing theoretical support. The source
code is not available.

Other libraries for generation of pseudorandom numbers

GNU Scientific Library http://www.gnu.org/software/gsl/
18 standard PRNGsS, including old ones and some modern ones,
standard realization for CPU with C language. No realizations for parallel calculations.

Intel MKL Library http://software.intel.com/en-us/articles/intel-mkl/
7 standard PRNGs, efficient realizations for CPU using SIMD , i.e. SSE processor instructions
and 128-bit XMM-registers. No parallelization.

RNGSSELIB L.Yu. B., L.N. Shchur, Computer Physics Communications, 182 (7), 1518-1527 (2011).

6 modern and reliable PRNGs. Efficient realizations for CPU using SIMD , i.e. SSE processor
instructions and 128-bit XMM-registers. The realizations are even more efficient, than
Intel MKL. No parallelization.

SPRNG http://sprng.cs.fsu.edu/
Standard PRNGs (old ones). Parallelization with the parameterization method, without
convincing theoretical support. (Florida State University, CILIA)

http://www.gnu.org/software/gsl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://sprng.cs.fsu.edu/

Conclusion

1. Program library PRAND for parallel pseudorandom number generation is
developed. It contains realizations for the generators, which are based on the
parallel evolution of toral automorphisms (GM19, GM31, GM61, GM29.1, GM55.4,
GQ58.1, GQ58.3, GQ58.4), also the generators MRG32K3A, LFSR113 and
MT19937, i.e. the most reliable modern PRNG algorithms.

2. For each of the generators the library includes realizations for:

« the ability to initialize up to 101? independent streams with the block splitting
method,;

« efficient versions for CPU which employ SIMD parallelism of modern CPUs
and corresponding 128-bit XMM-registers and SSE-commands;

* single-threaded realizations for GPU, which can be used in Monte Carlo
calculations, where the computational threads and nodes can be used in any
way chosen by an application;

« multi-threaded realizations for GPU — employing many GPU threads in order
to substantially speed up the calculations.

3. The multi-GPU realization for multidimensional Monte-Carlo integration algorithm
VEGAS is developed. The performance of numerical integration is substantially
higher when using a single GPU compared to using a single CPU. Also, the
performance of numerical integration substantially and linearly increases with
increasing the number of CPU/GPU nodes involved in the calculation.

