

Parallel streams of pseudorandom numbers for

Monte Carlo simulations: Using most reliable

algorithms and applying parallelism of modern

CPUs and GPUs

L.Yu. Barash

Landau Institute for Theoretical Physics RAS

 November 30 2012, Universität Leipzig, CompPhys12

Outline
1. Methods for pseudorandom number generation

2. Methods for generation of parallel streams of

pseudorandom numbers

3. Fast algorithms for skipping over terms in the generators

and for initialization of independent sequences

4. Library PRAND: single-threaded parallel algorithms for

pseudorandom number generators and their usage

5. Library PRAND: multithreaded parallel algorithms for

pseudorandom number generators. Speeding up the

calculations. Efficiency of using GPU capabilities by multi-

threaded routines in PRAND library.

6. Multi-GPU multidimensional Monte-Carlo integration with

VEGAS algorithm. Efficiency of parallelization.

7. Comparing with other PRND libraries which allow to

generate parallel pseudorandom number streams.

Requirements for a PRNG and its implementation in a

subroutine library

1. Statistical robustness

2. Unpredictability

3. Long period

4. Efficiency

5. Theoretical support

6. Repeatability

7. Portability

8. Skipping over terms (jumping ahead)

9. Proper initialization

Major methods for random

number generation

1. Linear Congruential Generator (LCG)

2. Generalized feedback shift register (GFSR)

Examples of modern modifications and

generalizations to the LCG and GFSR methods:

• Mersenne Twister (Matsumoto, Tishimura, 1998),

 WELL (2006)

• Combined LCG generators (L’Ecuyer, 1999)

• Combined Tausworthe generators (L’Ecuyer, 1996;

 L’Ecuyer, 1999).

Method for pseudorandom number generation based on

parallel evolution of toral automorphisms

L.Yu. B., Europhysics Letters (EPL) 95, 10003 (2011).

L.Yu. B., L.N. Shchur, Computer Physics Communications, 182 (7), 1518-1527 (2011).

L.Yu. B., L.N. Shchur, Phys.Rev. E 73 , 036701 (2006).

The main highlights of the method are:

Ensemble of transformations: the ensemble of MRG-transformations is

used and not the single system

Hidden variables: only part of the generated information goes to the

output of the generator. This helps to suppress correlations, complicates

deciphering and results in other good properties.

Period length: The period equals if one uses the mesh ,

where is prime integer. The period equals for the mesh .

The period can be as large as required.

Description of the method: the basic unit of the generator

Characteristic polynomial of the recurrence relation:

Set of states: ,

In practice , or or (is a prime integer).

The transition function of the generator is defined as an action of the map

where points are transformed at each step.

Equivalent description with the recurrence relation:

Here

Description of the method: the basic unit of the generator

Let denote the high-order bit :

The output function of the generator

is defined as follows:

In other words, ̶ is an s-bit integer consisting of the bits

In the case , contains precisely

the high-order bits of the integers

The constructed RNG has much hidden information.

Indeed, bits of each state are the hidden variables;

these are the bits that are not involved in constructing

of the output value

The regions on the torus and five-bit sequences generated

by the toral automorphism

L.Yu. B., Europhysics Letters (EPL) 95, 10003 (2011).

L.Yu. B., L.N. Shchur, Phys.Rev. E 73 , 036701 (2006).

Parameters of the new generators

Results of statistical testing with the

TestU01 batteries of tests.

Methods for generation of parallel

streams of pseudorandom numbers
1. Random seeding

2. Parameterization

3. Block splitting

4. Leapfrog

(figures are taken from H. Bauke, S. Mertens, Phys. Rev. E 75, 066701 (2007))

Efficient algorithms to jump ahead and

to initialize subsequences for the chosen generators

Algorithm to jump ahead for the

combined generator reduces to

jumping ahead for every

particular shift register sequence.

The library PRAND: single-threaded parallel algorithms for PRNGs

and their usage

The library PRAND: multithreaded parallel algorithms for PRNGs

in order to speed up the calculations

Parallel algorithms for GM19,GM31,GM61,GM55.4,GQ58.1,GQ58.3,GQ58.4

Algorithm «one generator per s threads»

Parallel algorithm for MT19937: one generator per 227 threads.

CPU/OC Generator Number of

threads per

block

Speed-up factor (time

needed for multi-

threaded calculation

diveded by time

needed for single-

threaded calculation)

Multi-

threaded

=

1 block

Multi-

threaded

=

64 blocks

Intel Xeon E5630

2.53 GHz/ CentOS

6.1 («Lomonosov»

supercomputer in

Moscow State

University)

GM19 1024 31.9 259.8

GM31 1024 96.8 827.0

GM61 1024 169.5 1424.0

GM29.1 1024 30.8 252.1

GM55.4 1024 263.9 1462.3

GQ58.1 1024 99.8 828.1

GQ58.3 1023 175.7 1410.9

GQ58.4 1024 258.4 1469.3

MRG32K3A 1024 82.4 133.8

LFSR113 1024 17.2 20.1

MT19937 227 72.4 191.8

Efficiency of using GPU capabilities by multi-threaded routines in PRAND library

Examples of using PRAND library in

applications, where employing hybrid parallel

computational systems results in significant

economic effect

1. Growth of two-dimensional structures

 within the model of diffusion limited aggregation

2. Multidimensional numerical integration

3. Modeling of magnetism in materials using spin models

20 40 60 80 100 120 140 160 180

10

20

30

40

50

60

70

80

90

k

N

 Multi-GPU multidimensional Monte-Carlo integration

 with VEGAS algorithm. Efficiency of parallelization.

Dependence of efficiency of parallelization k=T(1)/T(N) on N,

where T(N) is time needed for the calculation employing N CPU/GPU.

Stars denote calculations with «Lomonosov» supercomputer in Moscow State University.

Squares denote calculations with «K-100» supercomputer in

Keldysh Institute for Applied Mathematics, Russian Academy of Sciences.

Parallel software was developed using the technologies MPI and CUDA.

Other PRND libraries which allow to generate

parallel pseudorandom number streams. Comparison.

1. Tina's Random Number Generation Library (TRNG), (Universität

Magdeburg, Germany)

Among the generators presented in the library, jumping ahead and initialization of

parallel streams are included only for linear congruential generators, for the MRG

generators and for the YARN generators, i.e., only for insufficiently reliable

PRNGs.

2. NAG Numerical Routines for GPU, (Oxford, UK) released in the end of

2011.

The library contains parallel algorithms for MRG32K3A and MT19937. The

library is commercial, source code is not available.

3. cuRAND library, NVIDIA CUDA Toolkit 4.1, actual version is released

 in February 2012.

The library contains the generators MTGP Mersenne Twister, MRG32K3A,

XORWOW. For MTGP Mersenne Twister initialization is carried out with the

parameterization method, without convincing theoretical support. The source

code is not available.

GNU Scientific Library http://www.gnu.org/software/gsl/

18 standard PRNGs, including old ones and some modern ones,

standard realization for CPU with C language. No realizations for parallel calculations.

Intel MKL Library http://software.intel.com/en-us/articles/intel-mkl/

7 standard PRNGs, efficient realizations for CPU using SIMD , i.e. SSE processor instructions

and 128-bit XMM-registers. No parallelization.

RNGSSELIB L.Yu. B., L.N. Shchur, Computer Physics Communications, 182 (7), 1518-1527 (2011).

6 modern and reliable PRNGs. Efficient realizations for CPU using SIMD , i.e. SSE processor

instructions and 128-bit XMM-registers. The realizations are even more efficient, than

Intel MKL. No parallelization.

SPRNG http://sprng.cs.fsu.edu/

Standard PRNGs (old ones). Parallelization with the parameterization method, without

convincing theoretical support. (Florida State University, США)

Other libraries for generation of pseudorandom numbers

http://www.gnu.org/software/gsl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://sprng.cs.fsu.edu/

Conclusion
1. Program library PRAND for parallel pseudorandom number generation is

developed. It contains realizations for the generators, which are based on the

parallel evolution of toral automorphisms (GM19, GM31, GM61, GM29.1, GM55.4,

GQ58.1, GQ58.3, GQ58.4), also the generators MRG32K3A, LFSR113 and

MT19937, i.e. the most reliable modern PRNG algorithms.

2. For each of the generators the library includes realizations for:

• the ability to initialize up to independent streams with the block splitting

method;

• efficient versions for CPU which employ SIMD parallelism of modern CPUs

and corresponding 128-bit XMM-registers and SSE-commands;

• single-threaded realizations for GPU, which can be used in Monte Carlo

calculations, where the computational threads and nodes can be used in any

way chosen by an application;

• multi-threaded realizations for GPU  employing many GPU threads in order

to substantially speed up the calculations.

3. The multi-GPU realization for multidimensional Monte-Carlo integration algorithm

VEGAS is developed. The performance of numerical integration is substantially

higher when using a single GPU compared to using a single CPU. Also, the

performance of numerical integration substantially and linearly increases with

increasing the number of CPU/GPU nodes involved in the calculation.

