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Motivation

 Investigating basis structure formation mechanisms of biomolecules

at different interfaces is one of the major challenges of modern

interdisciplinary research and possible application in nanotechnology

 Applications:

Polymer adhesion to metals, semiconductors

biomedical implants and biosensors, smart

drugs etc.

 Due to the complexity introduced by the huge amount of possible

substrate structures and sequence variations this problem is not trivial.

Therefore the theoretical treatment of the adsorption of

macromolecules within the framework of minimalistic coarse-grained

polymer models in statistical mechanics has been a longstanding

problem.
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The polymer  Model
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Interaction energy:

■ Coarse-grained off-lattice

■ Semi-flexible

■ Three-dimensional 

Adjacent monomers are connected by rigid covalent bonds 

and the distance between them is  fixed and set to unity

The position vector of the ith monomer is ir
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Polymer Chain inside an Attractice Sphere Potential

■ The interaction of polymer monomers and the attractive 

sphere is of van der Walls type, modeled by LJ 12-6

We integrate this potential over the entire sphere inner 

surface

Where the surface element in spherical coordinates is
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Polymer Chain inside an Attractice Sphere Potential
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cR The radius of the sphere

ir The distance of a

monomer to the origin

c Set to unity

 Varied during simulation
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Polymer Chain inside an Attractice Sphere Potential
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Simulations in Generalized Ensembles

• Idea: choose ensemble that allows better sampling

• Example: Multicanonical Ensemble

• General Procedure:

Determine the weight factors

Large scale simulation

Calculate expectation values for desired temperatures

• Problem: Find good estimators for the weights     

• Advantages:

Any energy barrier can be crossed.

The probability of finding the global minimum is enhanced.

Thermodynamic quantities for a range of temperatures
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Multicanonical Monte Carlo Method

• The canonical ensemble samples with the Boltzmann 
probability density

where x labels the configuration. The probability of the 
energy E is

where n(E) is the density of states.

• The Muca ensemble is based on a probability function in 
which the different energies are equally probable:

where   w(E)  are multicanonical weight factors. 

    ZTkExP
Bx

B //exp 
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Observables

Specific Heat:
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Radius of gyration:

Mean number of adsorbed monomers to the inner wall of the sphere:
We define a monomer i is being adsorbed if 

and this can be expressed as                                         . 
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Observables

■ Gyration Tensor

Transformation to principal axis system diagonalizes S

Where the eigenvalues are sorted in descending order
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Observables

■ The first invariant of Gyration Tensor

The second invariant shape descriptor is Shape Anisotropy (reflects both 

symmetry and dimensionality)

Where 

The last shape desciptor is the asphericity parameter
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Results: Pseudo Phase Diagram

D : Desorbed

A: Adsorbed

E: Extended

G: Globular

C:Compact
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Results:   Specific -Heat   
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Results:  Radius of Gyration  
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Results: The mean number of adsorbed monomers   
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Results: Relative Shape Anisotropy    
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Results: The eigenvalues of the Gyration tensor   
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Results: Fluctuations of the Observables   
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Results: Low Energy Conformations

1.0 4.0 7.0 0.1
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Results: The ratio of the greatest eigenvalue to the smallest    


